Releases: drizzle-team/drizzle-orm
0.31.1
New Features
Live Queries 🎉
For a full explanation about Drizzle + Expo welcome to discussions
As of v0.31.1
Drizzle ORM now has native support for Expo SQLite Live Queries!
We've implemented a native useLiveQuery
React Hook which observes necessary database changes and automatically re-runs database queries. It works with both SQL-like and Drizzle Queries:
import { useLiveQuery, drizzle } from 'drizzle-orm/expo-sqlite';
import { openDatabaseSync } from 'expo-sqlite/next';
import { users } from './schema';
import { Text } from 'react-native';
const expo = openDatabaseSync('db.db', { enableChangeListener: true }); // <-- enable change listeners
const db = drizzle(expo);
const App = () => {
// Re-renders automatically when data changes
const { data } = useLiveQuery(db.select().from(users));
// const { data, error, updatedAt } = useLiveQuery(db.query.users.findFirst());
// const { data, error, updatedAt } = useLiveQuery(db.query.users.findMany());
return <Text>{JSON.stringify(data)}</Text>;
};
export default App;
We've intentionally not changed the API of ORM itself to stay with conventional React Hook API, so we have useLiveQuery(databaseQuery)
as opposed to db.select().from(users).useLive()
or db.query.users.useFindMany()
We've also decided to provide data
, error
and updatedAt
fields as a result of hook for concise explicit error handling following practices of React Query
and Electric SQL
0.31.0
Breaking changes
Note:
drizzle-orm@0.31.0
can be used withdrizzle-kit@0.22.0
or higher. The same applies to Drizzle Kit. If you run a Drizzle Kit command, it will check and prompt you for an upgrade (if needed). You can check for Drizzle Kit updates. below
PostgreSQL indexes API was changed
The previous Drizzle+PostgreSQL indexes API was incorrect and was not aligned with the PostgreSQL documentation. The good thing is that it was not used in queries, and drizzle-kit didn't support all properties for indexes. This means we can now change the API to the correct one and provide full support for it in drizzle-kit
Previous API
- No way to define SQL expressions inside
.on
. .using
and.on
in our case are the same thing, so the API is incorrect here..asc()
,.desc()
,.nullsFirst()
, and.nullsLast()
should be specified for each column or expression on indexes, but not on an index itself.
// Index declaration reference
index('name')
.on(table.column1, table.column2, ...) or .onOnly(table.column1, table.column2, ...)
.concurrently()
.using(sql``) // sql expression
.asc() or .desc()
.nullsFirst() or .nullsLast()
.where(sql``) // sql expression
Current API
// First example, with `.on()`
index('name')
.on(table.column1.asc(), table.column2.nullsFirst(), ...) or .onOnly(table.column1.desc().nullsLast(), table.column2, ...)
.concurrently()
.where(sql``)
.with({ fillfactor: '70' })
// Second Example, with `.using()`
index('name')
.using('btree', table.column1.asc(), sql`lower(${table.column2})`, table.column1.op('text_ops'))
.where(sql``) // sql expression
.with({ fillfactor: '70' })
New Features
🎉 "pg_vector" extension support
There is no specific code to create an extension inside the Drizzle schema. We assume that if you are using vector types, indexes, and queries, you have a PostgreSQL database with the
pg_vector
extension installed.
You can now specify indexes for pg_vector
and utilize pg_vector
functions for querying, ordering, etc.
Let's take a few examples of pg_vector
indexes from the pg_vector
docs and translate them to Drizzle
L2 distance, Inner product and Cosine distance
// CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);
// CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);
// CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);
const table = pgTable('items', {
embedding: vector('embedding', { dimensions: 3 })
}, (table) => ({
l2: index('l2_index').using('hnsw', table.embedding.op('vector_l2_ops'))
ip: index('ip_index').using('hnsw', table.embedding.op('vector_ip_ops'))
cosine: index('cosine_index').using('hnsw', table.embedding.op('vector_cosine_ops'))
}))
L1 distance, Hamming distance and Jaccard distance - added in pg_vector 0.7.0 version
// CREATE INDEX ON items USING hnsw (embedding vector_l1_ops);
// CREATE INDEX ON items USING hnsw (embedding bit_hamming_ops);
// CREATE INDEX ON items USING hnsw (embedding bit_jaccard_ops);
const table = pgTable('table', {
embedding: vector('embedding', { dimensions: 3 })
}, (table) => ({
l1: index('l1_index').using('hnsw', table.embedding.op('vector_l1_ops'))
hamming: index('hamming_index').using('hnsw', table.embedding.op('bit_hamming_ops'))
bit: index('bit_jaccard_index').using('hnsw', table.embedding.op('bit_jaccard_ops'))
}))
For queries, you can use predefined functions for vectors or create custom ones using the SQL template operator.
You can also use the following helpers:
import { l2Distance, l1Distance, innerProduct,
cosineDistance, hammingDistance, jaccardDistance } from 'drizzle-orm'
l2Distance(table.column, [3, 1, 2]) // table.column <-> '[3, 1, 2]'
l1Distance(table.column, [3, 1, 2]) // table.column <+> '[3, 1, 2]'
innerProduct(table.column, [3, 1, 2]) // table.column <#> '[3, 1, 2]'
cosineDistance(table.column, [3, 1, 2]) // table.column <=> '[3, 1, 2]'
hammingDistance(table.column, '101') // table.column <~> '101'
jaccardDistance(table.column, '101') // table.column <%> '101'
If pg_vector
has some other functions to use, you can replicate implimentation from existing one we have. Here is how it can be done
export function l2Distance(
column: SQLWrapper | AnyColumn,
value: number[] | string[] | TypedQueryBuilder<any> | string,
): SQL {
if (is(value, TypedQueryBuilder<any>) || typeof value === 'string') {
return sql`${column} <-> ${value}`;
}
return sql`${column} <-> ${JSON.stringify(value)}`;
}
Name it as you wish and change the operator. This example allows for a numbers array, strings array, string, or even a select query. Feel free to create any other type you want or even contribute and submit a PR
Examples
Let's take a few examples of pg_vector
queries from the pg_vector
docs and translate them to Drizzle
import { l2Distance } from 'drizzle-orm';
// SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
db.select().from(items).orderBy(l2Distance(items.embedding, [3,1,2]))
// SELECT embedding <-> '[3,1,2]' AS distance FROM items;
db.select({ distance: l2Distance(items.embedding, [3,1,2]) })
// SELECT * FROM items ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;
const subquery = db.select({ embedding: items.embedding }).from(items).where(eq(items.id, 1));
db.select().from(items).orderBy(l2Distance(items.embedding, subquery)).limit(5)
// SELECT (embedding <#> '[3,1,2]') * -1 AS inner_product FROM items;
db.select({ innerProduct: sql`(${maxInnerProduct(items.embedding, [3,1,2])}) * -1` }).from(items)
// and more!
🎉 New PostgreSQL types: point
, line
You can now use point
and line
from PostgreSQL Geometric Types
Type point
has 2 modes for mappings from the database: tuple
and xy
.
-
tuple
will be accepted for insert and mapped on select to a tuple. So, the database Point(1,2) will be typed as [1,2] with drizzle. -
xy
will be accepted for insert and mapped on select to an object with x, y coordinates. So, the database Point(1,2) will be typed as{ x: 1, y: 2 }
with drizzle
const items = pgTable('items', {
point: point('point'),
pointObj: point('point_xy', { mode: 'xy' }),
});
Type line
has 2 modes for mappings from the database: tuple
and abc
.
-
tuple
will be accepted for insert and mapped on select to a tuple. So, the database Line{1,2,3} will be typed as [1,2,3] with drizzle. -
abc
will be accepted for insert and mapped on select to an object with a, b, and c constants from the equationAx + By + C = 0
. So, the database Line{1,2,3} will be typed as{ a: 1, b: 2, c: 3 }
with drizzle.
const items = pgTable('items', {
line: line('line'),
lineObj: point('line_abc', { mode: 'abc' }),
});
🎉 Basic "postgis" extension support
There is no specific code to create an extension inside the Drizzle schema. We assume that if you are using postgis types, indexes, and queries, you have a PostgreSQL database with the
postgis
extension installed.
geometry
type from postgis extension:
const items = pgTable('items', {
geo: geometry('geo', { type: 'point' }),
geoObj: geometry('geo_obj', { type: 'point', mode: 'xy' }),
geoSrid: geometry('geo_options', { type: 'point', mode: 'xy', srid: 4000 }),
});
mode
Type geometry
has 2 modes for mappings from the database: tuple
and xy
.
tuple
will be accepted for insert and mapped on select to a tuple. So, the database geometry will be typed as [1,2] with drizzle.xy
will be accepted for insert and mapped on select to an object with x, y coordinates. So, the database geometry will be typed as{ x: 1, y: 2 }
with drizzle
type
The current release has a predefined type: point
, which is the geometry(Point)
type in the PostgreSQL PostGIS extension. You can specify any string there if you want to use some other type
Drizzle Kit updates: drizzle-kit@0.22.0
Release notes here are partially duplicated from drizzle-kit@0.22.0
New Features
🎉 Support for new types
Drizzle Kit can now handle:
point
andline
from PostgreSQLvector
from the PostgreSQLpg_vector
extensiongeometry
from the PostgreSQLPostGIS
extension
🎉 New param in drizzle.config - extensionsFilters
The PostGIS extension creates a few internal tables in the public
schema. This means that if you have a database with the PostGIS extension and use push
or introspect
, all those tables will be included in diff
operations. In this case, you would need to specify tablesFilter
, find all tables created by the extension, and list them in this parameter.
We have addressed this issue so that you won't need to take all these steps. Simply specify extensionsFilters
with the name of the extension used, and Drizzle will skip all the necessary tables.
Currently, we only support the postgis
option, but we plan to add more extensions if they create tables in the public
schema.
The postgis
option will skip the geography_columns
, geometry_columns
, and spatial_ref_sys
tables
import { defineConfig } from 'drizzle-kit'
export default defaultConfig({
dialect: "postgresql",
extensionsFilters: ["postgis"],
})
Improvements
Update zod schemas for database credentials and write tests to all the positive/negative cases
- support full set of SSL params in kit config, provide types from node:tls connection
import { defineConfig } from 'drizzle-kit'
export ...
v0.31.0-beta
Breaking changes
PostgreSQL indexes API was changed
The previous Drizzle+PostgreSQL indexes API was incorrect and was not aligned with the PostgreSQL documentation. The good thing is that it was not used in queries, and drizzle-kit didn't support all properties for indexes. This means we can now change the API to the correct one and provide full support for it in drizzle-kit
Previous API
- No way to define SQL expressions inside
.on
. .using
and.on
in our case are the same thing, so the API is incorrect here..asc()
,.desc()
,.nullsFirst()
, and.nullsLast()
should be specified for each column or expression on indexes, but not on an index itself.
// Index declaration reference
index('name')
.on(table.column1, table.column2, ...) or .onOnly(table.column1, table.column2, ...)
.concurrently()
.using(sql``) // sql expression
.asc() or .desc()
.nullsFirst() or .nullsLast()
.where(sql``) // sql expression
Current API
// First example, with `.on()`
index('name')
.on(table.column1.asc(), table.column2.nullsFirst(), ...) or .onOnly(table.column1.desc().nullsLast(), table.column2, ...)
.concurrently()
.where(sql``)
.with({ fillfactor: '70' })
// Second Example, with `.using()`
index('name')
.using('btree', table.column1.asc(), sql`lower(${table.column2})`, table.column1.op('text_ops'))
.where(sql``) // sql expression
.with({ fillfactor: '70' })
New Features
🎉 "pg_vector" extension support
There is no specific code to create an extension inside the Drizzle schema. We assume that if you are using vector types, indexes, and queries, you have a PostgreSQL database with the
pg_vector
extension installed.
You can now specify indexes for pg_vector
and utilize pg_vector
functions for querying, ordering, etc.
Let's take a few examples of pg_vector
indexes from the pg_vector
docs and translate them to Drizzle
L2 distance, Inner product and Cosine distance
// CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);
// CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);
// CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);
const table = pgTable('items', {
embedding: vector('embedding', { dimensions: 3 })
}, (table) => ({
l2: index('l2_index').using('hnsw', table.embedding.op('vector_l2_ops'))
ip: index('ip_index').using('hnsw', table.embedding.op('vector_ip_ops'))
cosine: index('cosine_index').using('hnsw', table.embedding.op('vector_cosine_ops'))
}))
L1 distance, Hamming distance and Jaccard distance - added in pg_vector 0.7.0 version
// CREATE INDEX ON items USING hnsw (embedding vector_l1_ops);
// CREATE INDEX ON items USING hnsw (embedding bit_hamming_ops);
// CREATE INDEX ON items USING hnsw (embedding bit_jaccard_ops);
const table = pgTable('table', {
embedding: vector('embedding', { dimensions: 3 })
}, (table) => ({
l1: index('l1_index').using('hnsw', table.embedding.op('vector_l1_ops'))
hamming: index('hamming_index').using('hnsw', table.embedding.op('bit_hamming_ops'))
bit: index('bit_jaccard_index').using('hnsw', table.embedding.op('bit_jaccard_ops'))
}))
For queries, you can use predefined functions for vectors or create custom ones using the SQL template operator.
You can also use the following helpers:
import { l2Distance, l1Distance, innerProduct,
cosineDistance, hammingDistance, jaccardDistance } from 'drizzle-orm'
l2Distance(table.column, [3, 1, 2]) // table.column <-> '[3, 1, 2]'
l1Distance(table.column, [3, 1, 2]) // table.column <+> '[3, 1, 2]'
innerProduct(table.column, [3, 1, 2]) // table.column <#> '[3, 1, 2]'
cosineDistance(table.column, [3, 1, 2]) // table.column <=> '[3, 1, 2]'
hammingDistance(table.column, '101') // table.column <~> '101'
jaccardDistance(table.column, '101') // table.column <%> '101'
If pg_vector
has some other functions to use, you can replicate implimentation from existing one we have. Here is how it can be done
export function l2Distance(
column: SQLWrapper | AnyColumn,
value: number[] | string[] | TypedQueryBuilder<any> | string,
): SQL {
if (is(value, TypedQueryBuilder<any>) || typeof value === 'string') {
return sql`${column} <-> ${value}`;
}
return sql`${column} <-> ${JSON.stringify(value)}`;
}
Name it as you wish and change the operator. This example allows for a numbers array, strings array, string, or even a select query. Feel free to create any other type you want or even contribute and submit a PR
Examples
Let's take a few examples of pg_vector
queries from the pg_vector
docs and translate them to Drizzle
import { l2Distance } from 'drizzle-orm';
// SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
db.select().from(items).orderBy(l2Distance(items.embedding, [3,1,2]))
// SELECT embedding <-> '[3,1,2]' AS distance FROM items;
db.select({ distance: l2Distance(items.embedding, [3,1,2]) })
// SELECT * FROM items ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;
const subquery = db.select({ embedding: items.embedding }).from(items).where(eq(items.id, 1));
db.select().from(items).orderBy(l2Distance(items.embedding, subquery)).limit(5)
// SELECT (embedding <#> '[3,1,2]') * -1 AS inner_product FROM items;
db.select({ innerProduct: sql`(${maxInnerProduct(items.embedding, [3,1,2])}) * -1` }).from(items)
// and more!
0.30.10
New Features
🎉 .if()
function added to all WHERE expressions
Select all users after cursors if a cursor value was provided
async function someFunction(categories: string[] = [], views = 0) {
await db
.select()
.from(users)
.where(
and(
gt(posts.views, views).if(views > 100),
inArray(posts.category, categories).if(categories.length > 0),
),
);
}
Bug Fixes
- Fixed internal mappings for sessions
.all
,.values
,.execute
functions in AWS DataAPI
0.30.9
- 🐛 Fixed migrator in AWS Data API
- Added
setWhere
andtargetWhere
fields to.onConflictDoUpdate()
config in SQLite instead of singlewhere
field - 🛠️ Added schema information to Drizzle instances via
db._.fullSchema
0.30.8
⚠️ Only available indrizzle-orm
for now,drizzle-kit
support will arrive soon
import { pgSchema } from 'drizzle-orm/pg-core';
const mySchema = pgSchema('mySchema');
const colors = mySchema.enum('colors', ['red', 'green', 'blue']);
- 🎉 Changed D1
migrate()
function to use batch API (#2137) - 🐛 Split
where
clause in Postgres.onConflictDoUpdate
method intosetWhere
andtargetWhere
clauses, to support bothwhere
cases inon conflict ...
clause (fixes #1628, #1302 via #2056) - 🐛 Fixed query generation for
where
clause in Postgres.onConflictDoNothing
method, as it was placed in a wrong spot (fixes #1628 via #2056) - 🐛 Fixed multiple issues with AWS Data API driver (fixes #1931, #1932, #1934, #1936 via #2119)
- 🐛 Fix inserting and updating array values in AWS Data API (fixes #1912 via #1911)
Thanks @hugo082 and @livingforjesus!
0.30.7
0.30.6
New Features
🎉 PGlite driver Support
PGlite is a WASM Postgres build packaged into a TypeScript client library that enables you to run Postgres in the browser, Node.js and Bun, with no need to install any other dependencies. It is only 2.6mb gzipped.
It can be used as an ephemeral in-memory database, or with persistence either to the file system (Node/Bun) or indexedDB (Browser).
Unlike previous "Postgres in the browser" projects, PGlite does not use a Linux virtual machine - it is simply Postgres in WASM.
Usage Example
import { PGlite } from '@electric-sql/pglite';
import { drizzle } from 'drizzle-orm/pglite';
// In-memory Postgres
const client = new PGlite();
const db = drizzle(client);
await db.select().from(users);
There are currently 2 limitations, that should be fixed on Pglite side:
0.30.5
New Features
🎉 $onUpdate
functionality for PostgreSQL, MySQL and SQLite
Adds a dynamic update value to the column.
The function will be called when the row is updated, and the returned value will be used as the column value if none is provided.
If no default
(or $defaultFn
) value is provided, the function will be called when the row is inserted as well, and the returned value will be used as the column value.
Note: This value does not affect the
drizzle-kit
behavior, it is only used at runtime indrizzle-orm
.
const usersOnUpdate = pgTable('users_on_update', {
id: serial('id').primaryKey(),
name: text('name').notNull(),
updateCounter: integer('update_counter').default(sql`1`).$onUpdateFn(() => sql`update_counter + 1`),
updatedAt: timestamp('updated_at', { mode: 'date', precision: 3 }).$onUpdate(() => new Date()),
alwaysNull: text('always_null').$type<string | null>().$onUpdate(() => null),
});
Fixes
- [BUG]: insertions on columns with the smallserial datatype are not optional - #1848
Thanks @Angelelz and @gabrielDonnantuoni!
0.30.4
New Features
🎉 xata-http driver support
According their official website, Xata is a Postgres data platform with a focus on reliability, scalability, and developer experience. The Xata Postgres service is currently in beta, please see the Xata docs on how to enable it in your account.
Drizzle ORM natively supports both the xata
driver with drizzle-orm/xata
package and the postgres
or pg
drivers for accessing a Xata Postgres database.
The following example use the Xata generated client, which you obtain by running the xata init CLI command.
pnpm add drizzle-orm @xata.io/client
import { drizzle } from 'drizzle-orm/xata-http';
import { getXataClient } from './xata'; // Generated client
const xata = getXataClient();
const db = drizzle(xata);
const result = await db.select().from(...);
You can also connect to Xata using pg
or postgres.js
drivers