Skip to content

Commit

Permalink
Feature #2058 bias_ratio (#2317)
Browse files Browse the repository at this point in the history
  • Loading branch information
JohnHalleyGotway authored Oct 28, 2022
1 parent 82e5833 commit b71b1ce
Show file tree
Hide file tree
Showing 14 changed files with 246 additions and 31 deletions.
2 changes: 1 addition & 1 deletion data/table_files/met_header_columns_V11.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ V11.0 : STAT : PJC : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID
V11.0 : STAT : PRC : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL (N_THRESH) THRESH_[0-9]* PODY_[0-9]* POFD_[0-9]*
V11.0 : STAT : PSTD : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL (N_THRESH) BASER BASER_NCL BASER_NCU RELIABILITY RESOLUTION UNCERTAINTY ROC_AUC BRIER BRIER_NCL BRIER_NCU BRIERCL BRIERCL_NCL BRIERCL_NCU BSS BSS_SMPL THRESH_[0-9]*
V11.0 : STAT : ECLV : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL BASER VALUE_BASER (N_PTS) CL_[0-9]* VALUE_[0-9]*
V11.0 : STAT : ECNT : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL N_ENS CRPS CRPSS IGN ME RMSE SPREAD ME_OERR RMSE_OERR SPREAD_OERR SPREAD_PLUS_OERR CRPSCL CRPS_EMP CRPSCL_EMP CRPSS_EMP CRPS_EMP_FAIR
V11.0 : STAT : ECNT : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL N_ENS CRPS CRPSS IGN ME RMSE SPREAD ME_OERR RMSE_OERR SPREAD_OERR SPREAD_PLUS_OERR CRPSCL CRPS_EMP CRPSCL_EMP CRPSS_EMP CRPS_EMP_FAIR BIAS_RATIO N_GE_OBS ME_GE_OBS N_LT_OBS ME_LT_OBS
V11.0 : STAT : RPS : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL N_PROB RPS_REL RPS_RES RPS_UNC RPS RPSS RPSS_SMPL RPS_COMP
V11.0 : STAT : RHIST : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL (N_RANK) RANK_[0-9]*
V11.0 : STAT : PHIST : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL BIN_SIZE (N_BIN) BIN_[0-9]*
Expand Down
14 changes: 14 additions & 0 deletions docs/Users_Guide/appendixC.rst
Original file line number Diff line number Diff line change
Expand Up @@ -470,6 +470,7 @@ Mean Error (ME)
---------------

Called "ME" in CNT output :numref:`table_PS_format_info_CNT`
Called "ME_OERR", "ME_GE_OBS", and "ME_LT_OBS" in ECNT output :numref:`table_ES_header_info_es_out_ECNT`

The Mean Error, ME, is a measure of overall bias for continuous variables; in particular ME = Bias. It is defined as

Expand Down Expand Up @@ -1003,6 +1004,19 @@ The continuous ranked probability skill score (CRPSS) is similar to the MSESS an

For the normal distribution fit (CRPSS), the reference CRPS is computed using the climatological mean and standard deviation. For the empirical distribution (CRPSS_EMP), the reference CRPS is computed by sampling from the assumed normal climatological distribution defined by the mean and standard deviation.

Bias Ratio
----------

Called "BIAS_RATIO" in ECNT output :numref:`table_ES_header_info_es_out_ECNT`

The bias ratio (BIAS_RATIO) is computed when verifying an ensemble against gridded analyses or point observations. It is defined as the mean error (ME) of ensemble member values greater than or equal to the observation value to which they are matched divided by the absolute value of the mean error (ME) of ensemble member values less than the observation values.

.. math:: \text{BIAS_RATIO} = \frac{ \text{ME}_{f >= o} }{ |\text{ME}_{f < o}| }

A perfect forecast has ME = 0. Since BIAS_RATIO is computed as the high bias (ME_GE_OBS) divide by the absolute value of the low bias (ME_LT_OBS), a perfect forecast has BIAS_RATIO = 0/0, which is undefined. In practice, the high and low bias values are unlikely to be 0.

The range for BIAS_RATIO is 0 to infinity. A score of 1 indicates that the high and low biases are equal. A score greater than 1 indicates that the high bias is larger than the magnitude of the low bias. A score less than 1 indicates the opposite behavior.

IGN
---

Expand Down
15 changes: 15 additions & 0 deletions docs/Users_Guide/ensemble-stat.rst
Original file line number Diff line number Diff line change
Expand Up @@ -623,6 +623,21 @@ The format of the STAT and ASCII output of the Ensemble-Stat tool are described
* - 41
- CRPS_EMP_FAIR
- The Continuous Ranked Probability Skill Score (empirical distribution) adjusted by subtracting 1/2(m) times the mean absolute difference of the ensemble members (m is the ensemble size)
* - 42
- BIAS_RATIO
- The Bias Ratio
* - 43
- N_GE_OBS
- The number of ensemble values greater than or equal to their observations
* - 44
- ME_GE_OBS
- The Mean Error of the ensemble values greater than or equal to their observations
* - 45
- N_LT_OBS
- The number of ensemble values less than their observations
* - 46
- ME_LT_OBS
- The Mean Error of the ensemble values less than or equal to their observations

.. _table_ES_header_info_es_out_RPS:

Expand Down
2 changes: 1 addition & 1 deletion internal/test_unit/hdr/met_11_0.hdr
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ PJC : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_L
PRC : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL N_THRESH _VAR_
PSTD : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL N_THRESH BASER BASER_NCL BASER_NCU RELIABILITY RESOLUTION UNCERTAINTY ROC_AUC BRIER BRIER_NCL BRIER_NCU BRIERCL BRIERCL_NCL BRIERCL_NCU BSS BSS_SMPL _VAR_
ECLV : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL BASE N_PTS _VAR_
ECNT : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL N_ENS CRPS CRPSS IGN ME RMSE SPREAD ME_OERR RMSE_OERR SPREAD_OERR SPREAD_PLUS_OERR CRPSCL CRPS_EMP CRPSCL_EMP CRPSS_EMP CRPS_EMP_FAIR
ECNT : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL N_ENS CRPS CRPSS IGN ME RMSE SPREAD ME_OERR RMSE_OERR SPREAD_OERR SPREAD_PLUS_OERR CRPSCL CRPS_EMP CRPSCL_EMP CRPSS_EMP CRPS_EMP_FAIR BIAS_RATIO N_GE_OBS ME_GE_OBS N_LT_OBS ME_LT_OBS
RPS : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL N_PROB RPS_REL RPS_RES RPS_UNC RPS RPSS RPSS_SMPL RPS_COMP
RHIST : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL CRPS IGN N_RANK CRPSS SPREAD _VAR_
PHIST : VERSION MODEL DESC FCST_LEAD FCST_VALID_BEG FCST_VALID_END OBS_LEAD OBS_VALID_BEG OBS_VALID_END FCST_VAR FCST_UNITS FCST_LEV OBS_VAR OBS_UNITS OBS_LEV OBTYPE VX_MASK INTERP_MTHD INTERP_PNTS FCST_THRESH OBS_THRESH COV_THRESH ALPHA LINE_TYPE TOTAL BIN_SIZE N_BIN _VAR_
Expand Down
14 changes: 8 additions & 6 deletions src/basic/vx_util/stat_column_defs.h
Original file line number Diff line number Diff line change
Expand Up @@ -262,12 +262,14 @@ static const char * isc_columns [] = {
};

static const char * ecnt_columns [] = {
"TOTAL", "N_ENS", "CRPS",
"CRPSS", "IGN", "ME",
"RMSE", "SPREAD", "ME_OERR",
"RMSE_OERR", "SPREAD_OERR", "SPREAD_PLUS_OERR",
"CRPSCL", "CRPS_EMP", "CRPSCL_EMP",
"CRPSS_EMP", "CRPS_EMP_FAIR"
"TOTAL", "N_ENS", "CRPS",
"CRPSS", "IGN", "ME",
"RMSE", "SPREAD", "ME_OERR",
"RMSE_OERR", "SPREAD_OERR", "SPREAD_PLUS_OERR",
"CRPSCL", "CRPS_EMP", "CRPSCL_EMP",
"CRPSS_EMP", "CRPS_EMP_FAIR", "BIAS_RATIO",
"N_GE_OBS", "ME_GE_OBS", "N_LT_OBS",
"ME_LT_OBS"
};

static const char * rps_columns [] = {
Expand Down
29 changes: 23 additions & 6 deletions src/libcode/vx_stat_out/stat_columns.cc
Original file line number Diff line number Diff line change
Expand Up @@ -4220,12 +4220,14 @@ void write_ecnt_cols(const ECNTInfo &ecnt_info,
//
// Ensemble Continuous Statistics
// Dump out the ECNT line:
// TOTAL, N_ENS, CRPS,
// CRPSS, IGN, ME,
// RMSE, SPREAD, ME_OERR,
// RMSE_OERR, SPREAD_OERR, SPREAD_PLUS_OERR,
// CRPSCL, CRPS_EMP, CRPSCL_EMP,
// CRPSS_EMP CRPS_EMP_FAIR
// TOTAL, N_ENS, CRPS,
// CRPSS, IGN, ME,
// RMSE, SPREAD, ME_OERR,
// RMSE_OERR, SPREAD_OERR, SPREAD_PLUS_OERR,
// CRPSCL, CRPS_EMP, CRPSCL_EMP,
// CRPSS_EMP CRPS_EMP_FAIR, BIAS RATIO,
// N_GE_OBS, ME_GE_OBS, N_LT_OBS,
// ME_LT_OBS
//
at.set_entry(r, c+0, // Total Number of Pairs
ecnt_info.n_pair);
Expand Down Expand Up @@ -4278,6 +4280,21 @@ void write_ecnt_cols(const ECNTInfo &ecnt_info,
at.set_entry(r, c+16, // Empirical ensemble CRPS FAIR
ecnt_info.crps_emp_fair);

at.set_entry(r, c+17, // Bias Ratio
ecnt_info.bias_ratio);

at.set_entry(r, c+18, // Number of ensemble values >= observations
ecnt_info.n_ge_obs);

at.set_entry(r, c+19, // ME of ensemble values >= observations
ecnt_info.me_ge_obs);

at.set_entry(r, c+20, // Number of ensemble values < observations
ecnt_info.n_lt_obs);

at.set_entry(r, c+21, // ME of ensemble values < observations
ecnt_info.me_lt_obs);

return;
}

Expand Down
15 changes: 15 additions & 0 deletions src/libcode/vx_statistics/compute_stats.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1372,6 +1372,21 @@ void compute_ecnt_mean(const ECNTInfo *ecnt_info, int n,
for(i=0,na.erase(); i<n; i++) na.add(ecnt_info[i].spread_plus_oerr);
ecnt_mean.spread_plus_oerr = na.mean();

for(i=0,na.erase(); i<n; i++) na.add(ecnt_info[i].bias_ratio);
ecnt_mean.bias_ratio = na.mean();

for(i=0,na.erase(); i<n; i++) na.add(ecnt_info[i].n_ge_obs);
ecnt_mean.n_ge_obs = na.mean();

for(i=0,na.erase(); i<n; i++) na.add(ecnt_info[i].me_ge_obs);
ecnt_mean.me_ge_obs = na.mean();

for(i=0,na.erase(); i<n; i++) na.add(ecnt_info[i].n_lt_obs);
ecnt_mean.n_lt_obs = na.mean();

for(i=0,na.erase(); i<n; i++) na.add(ecnt_info[i].me_lt_obs);
ecnt_mean.me_lt_obs = na.mean();

return;
}

Expand Down
20 changes: 19 additions & 1 deletion src/libcode/vx_statistics/ens_stats.cc
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,9 @@ void ECNTInfo::clear() {
me = rmse = spread = bad_data_double;
me_oerr = rmse_oerr = spread_oerr = bad_data_double;
spread_plus_oerr = bad_data_double;

n_ge_obs = n_lt_obs = 0;
me_ge_obs = me_lt_obs = bias_ratio = bad_data_double;

return;
}
Expand Down Expand Up @@ -215,6 +218,12 @@ void ECNTInfo::assign(const ECNTInfo &c) {
spread_oerr = c.spread_oerr;
spread_plus_oerr = c.spread_plus_oerr;

n_ge_obs = c.n_ge_obs;
n_lt_obs = c.n_lt_obs;
me_ge_obs = c.me_ge_obs;
me_lt_obs = c.me_lt_obs;
bias_ratio = c.bias_ratio;

return;
}

Expand All @@ -230,7 +239,7 @@ void ECNTInfo::set(const PairDataEnsemble &pd) {
n_ens = pd.n_ens;

// Compute empirical CRPS scores
crps_emp = pd.crps_emp_na.wmean(pd.wgt_na);
crps_emp = pd.crps_emp_na.wmean(pd.wgt_na);
if(is_eq(crps_emp, 0.0)) crps_emp = 0.0;

crps_emp_fair = pd.crps_emp_fair_na.wmean(pd.wgt_na);
Expand Down Expand Up @@ -337,6 +346,15 @@ void ECNTInfo::set(const PairDataEnsemble &pd) {
// Compute the square root of the average variance plus oerr
spread_plus_oerr = square_root(pd.var_plus_oerr_na.wmean(pd.wgt_na));

// Compute bias ratio terms
n_ge_obs = nint(pd.n_ge_obs_na.sum());
me_ge_obs = pd.me_ge_obs_na.wmean(pd.n_ge_obs_na);
n_lt_obs = nint(pd.n_lt_obs_na.sum());
me_lt_obs = pd.me_lt_obs_na.wmean(pd.n_lt_obs_na);

// Compute bias ratio
bias_ratio = compute_bias_ratio(me_ge_obs, me_lt_obs);

return;
}

Expand Down
5 changes: 5 additions & 0 deletions src/libcode/vx_statistics/ens_stats.h
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,11 @@ class ECNTInfo {
double me_oerr, rmse_oerr, spread_oerr;
double spread_plus_oerr;

// Bias ratio information
int n_ge_obs, n_lt_obs;
double me_ge_obs, me_lt_obs;
double bias_ratio;

// Compute statistics
void set(const PairDataEnsemble &);

Expand Down
103 changes: 99 additions & 4 deletions src/libcode/vx_statistics/pair_data_ensemble.cc
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,11 @@ void PairDataEnsemble::clear() {
ign_na.clear();
pit_na.clear();

n_ge_obs_na.clear();
me_ge_obs_na.clear();
n_lt_obs_na.clear();
me_lt_obs_na.clear();

n_ens = 0;
n_pair = 0;
ctrl_index = bad_data_int;
Expand Down Expand Up @@ -141,6 +146,8 @@ void PairDataEnsemble::clear() {
me_oerr = bad_data_double;
rmse_oerr = bad_data_double;

bias_ratio = bad_data_double;

return;
}

Expand Down Expand Up @@ -168,6 +175,10 @@ void PairDataEnsemble::extend(int n) {
crpscl_gaus_na.extend (n);
ign_na.extend (n);
pit_na.extend (n);
n_ge_obs_na.extend (n);
me_ge_obs_na.extend (n);
n_lt_obs_na.extend (n);
me_lt_obs_na.extend (n);
skip_ba.extend (n);
var_na.extend (n);
var_oerr_na.extend (n);
Expand Down Expand Up @@ -227,6 +238,12 @@ void PairDataEnsemble::assign(const PairDataEnsemble &pd) {
crpscl_gaus_na = pd.crpscl_gaus_na;
ign_na = pd.ign_na;
pit_na = pd.pit_na;

n_ge_obs_na = pd.n_ge_obs_na;
me_ge_obs_na = pd.me_ge_obs_na;
n_lt_obs_na = pd.n_lt_obs_na;
me_lt_obs_na = pd.me_lt_obs_na;

n_pair = pd.n_pair;
ctrl_index = pd.ctrl_index;
skip_const = pd.skip_const;
Expand Down Expand Up @@ -265,6 +282,8 @@ void PairDataEnsemble::assign(const PairDataEnsemble &pd) {
me_oerr = pd.me_oerr;
rmse_oerr = pd.rmse_oerr;

bias_ratio = pd.bias_ratio;

set_ens_size(pd.n_ens);

for(i=0; i<n_ens; i++) e_na[i] = pd.e_na[i];
Expand Down Expand Up @@ -370,8 +389,8 @@ void PairDataEnsemble::compute_pair_vals(const gsl_rng *rng_ptr) {
// Initialize
cur_ens.erase();

// Compute the number of ensemble values less than the observation
for(j=0, n_vld=0, n_bel=0, n_tie=0; j<n_ens; j++) {
// Compute the number of ensemble values above and below the observation
for(j=0, n_vld = n_bel = n_tie = 0; j<n_ens; j++) {

// Skip bad data
if(e_na[j].n() > i && !is_bad_data(e_na[j][i])) {
Expand All @@ -382,7 +401,7 @@ void PairDataEnsemble::compute_pair_vals(const gsl_rng *rng_ptr) {
// Store the current ensemble value
cur_ens.add(e_na[j][i]);

// Keep track of the number of ties and the number below
// Track running counts and sums
if(is_eq(e_na[j][i], o_na[i])) n_tie++;
else if(e_na[j][i] < o_na[i]) n_bel++;
}
Expand Down Expand Up @@ -422,6 +441,10 @@ void PairDataEnsemble::compute_pair_vals(const gsl_rng *rng_ptr) {
crpscl_gaus_na.add(bad_data_double);
ign_na.add(bad_data_double);
pit_na.add(bad_data_double);
n_ge_obs_na.add(bad_data_double);
me_ge_obs_na.add(bad_data_double);
n_lt_obs_na.add(bad_data_double);
me_lt_obs_na.add(bad_data_double);
}
// Otherwise, compute scores
else {
Expand Down Expand Up @@ -492,6 +515,19 @@ void PairDataEnsemble::compute_pair_vals(const gsl_rng *rng_ptr) {
crpscl_gaus_na.add(compute_crps_gaus(o_na[i], cmn_na[i], csd_na[i]));
ign_na.add(compute_ens_ign(o_na[i], mean, stdev));
pit_na.add(compute_ens_pit(o_na[i], mean, stdev));

// Compute the Bias Ratio terms
int n_ge_obs, n_lt_obs;
double me_ge_obs, me_lt_obs;
compute_bias_ratio_terms(o_na[i], cur_ens,
n_ge_obs, me_ge_obs,
n_lt_obs, me_lt_obs);

// Store the Bias Ratio terms
n_ge_obs_na.add(n_ge_obs);
me_ge_obs_na.add(me_ge_obs);
n_lt_obs_na.add(n_lt_obs);
me_lt_obs_na.add(me_lt_obs);
}
} // end for i

Expand Down Expand Up @@ -820,7 +856,8 @@ PairDataEnsemble PairDataEnsemble::subset_pairs_obs_thresh(const SingleThresh &o
// Include in subset:
// wgt_na, o_na, cmn_na, csd_na, v_na, r_na,
// crps_emp_na, crps_emp_fair_na, crpscl_emp_na, crps_gaus_na, crpscl_gaus_na,
// ign_na, pit_na, var_na, var_oerr_na, var_plus_oerr_na,
// ign_na, pit_na, n_gt_obs_na, me_gt_obs_na, n_lt_obs_na, me_lt_obs_na,
// var_na, var_oerr_na, var_plus_oerr_na,
// mn_na, mn_oerr_na, e_na
//
// Exclude from subset:
Expand All @@ -841,6 +878,10 @@ PairDataEnsemble PairDataEnsemble::subset_pairs_obs_thresh(const SingleThresh &o
pd.crpscl_gaus_na.add(crpscl_gaus_na[i]);
pd.ign_na.add(ign_na[i]);
pd.pit_na.add(pit_na[i]);
pd.n_ge_obs_na.add(n_ge_obs_na[i]);
pd.me_ge_obs_na.add(me_ge_obs_na[i]);
pd.n_lt_obs_na.add(n_lt_obs_na[i]);
pd.me_lt_obs_na.add(me_lt_obs_na[i]);
pd.skip_ba.add(false);
pd.var_na.add(var_na[i]);
pd.var_oerr_na.add(var_oerr_na[i]);
Expand Down Expand Up @@ -2006,5 +2047,59 @@ double compute_ens_pit(double obs, double m, double s) {

return(v);
}

////////////////////////////////////////////////////////////////////////
//
// Compute the bias ratio terms
//
////////////////////////////////////////////////////////////////////////

void compute_bias_ratio_terms(double obs, const NumArray &e_na,
int &n_ge_obs, double &me_ge_obs,
int &n_lt_obs, double &me_lt_obs) {

// Initialize
n_ge_obs = n_lt_obs = 0;
me_ge_obs = me_lt_obs = 0.0;

// Loop over ensemble member values
for(int i=0; i<e_na.n(); i++) {

// Track counts and sums
if(e_na[i] >= obs) {
n_ge_obs += 1;
me_ge_obs += (e_na[i] - obs);
}
else {
n_lt_obs += 1;
me_lt_obs += (e_na[i] - obs);
}
}

// Convert sums to means
if(n_ge_obs > 0) me_ge_obs /= n_ge_obs;
else me_ge_obs = bad_data_double;
if(n_lt_obs > 0) me_lt_obs /= n_lt_obs;
else me_lt_obs = bad_data_double;

return;
}

////////////////////////////////////////////////////////////////////////

double compute_bias_ratio(double me_ge_obs, double me_lt_obs) {
double v;

// Compute bias ratio
if(is_bad_data(me_ge_obs) ||
is_bad_data(me_lt_obs) || is_eq(me_lt_obs, 0.0)) {
v = bad_data_double;
}
else {
v = me_ge_obs / abs(me_lt_obs);
}

return(v);
}

////////////////////////////////////////////////////////////////////////
Loading

0 comments on commit b71b1ce

Please sign in to comment.