Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

More granular unsafe blocks. #42

Merged
merged 1 commit into from
Mar 26, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 66 additions & 52 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -144,45 +144,53 @@ macro_rules! impl_Integer {
let buf_ptr = buf.as_mut_ptr() as *mut u8;
let lut_ptr = DEC_DIGITS_LUT.as_ptr();

unsafe {
// need at least 16 bits for the 4-characters-at-a-time to work.
if mem::size_of::<$t>() >= 2 {
// eagerly decode 4 characters at a time
while n >= 10000 {
let rem = (n % 10000) as isize;
n /= 10000;

let d1 = (rem / 100) << 1;
let d2 = (rem % 100) << 1;
curr -= 4;
// need at least 16 bits for the 4-characters-at-a-time to work.
if mem::size_of::<$t>() >= 2 {
// eagerly decode 4 characters at a time
while n >= 10000 {
let rem = (n % 10000) as isize;
n /= 10000;

let d1 = (rem / 100) << 1;
let d2 = (rem % 100) << 1;
curr -= 4;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2);
}
}
}

// if we reach here numbers are <= 9999, so at most 4 chars long
let mut n = n as isize; // possibly reduce 64bit math
// if we reach here numbers are <= 9999, so at most 4 chars long
let mut n = n as isize; // possibly reduce 64bit math

// decode 2 more chars, if > 2 chars
if n >= 100 {
let d1 = (n % 100) << 1;
n /= 100;
curr -= 2;
// decode 2 more chars, if > 2 chars
if n >= 100 {
let d1 = (n % 100) << 1;
n /= 100;
curr -= 2;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
}
}

// decode last 1 or 2 chars
if n < 10 {
curr -= 1;
// decode last 1 or 2 chars
if n < 10 {
curr -= 1;
unsafe {
*buf_ptr.offset(curr) = (n as u8) + b'0';
} else {
let d1 = n << 1;
curr -= 2;
}
} else {
let d1 = n << 1;
curr -= 2;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
}
}

if !is_nonnegative {
curr -= 1;
if !is_nonnegative {
curr -= 1;
unsafe {
*buf_ptr.offset(curr) = b'-';
}
}
Expand Down Expand Up @@ -245,45 +253,51 @@ macro_rules! impl_Integer128 {
let mut curr = buf.len() as isize;
let buf_ptr = buf.as_mut_ptr() as *mut u8;

unsafe {
// Divide by 10^19 which is the highest power less than 2^64.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf1 = buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [MaybeUninit<u8>; U64_MAX_LEN];
curr -= rem.write(&mut *buf1).len() as isize;
// Divide by 10^19 which is the highest power less than 2^64.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf1 = unsafe { buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [MaybeUninit<u8>; U64_MAX_LEN] };
curr -= rem.write(unsafe { &mut *buf1 }).len() as isize;

if n != 0 {
// Memset the base10 leading zeros of rem.
let target = buf.len() as isize - 19;
if n != 0 {
// Memset the base10 leading zeros of rem.
let target = buf.len() as isize - 19;
unsafe {
ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize);
curr = target;
}
curr = target;

// Divide by 10^19 again.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf2 = buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [MaybeUninit<u8>; U64_MAX_LEN];
curr -= rem.write(&mut *buf2).len() as isize;
// Divide by 10^19 again.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf2 = unsafe { buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [MaybeUninit<u8>; U64_MAX_LEN] };
curr -= rem.write(unsafe { &mut *buf2 }).len() as isize;

if n != 0 {
// Memset the leading zeros.
let target = buf.len() as isize - 38;
if n != 0 {
// Memset the leading zeros.
let target = buf.len() as isize - 38;
unsafe {
ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize);
curr = target;
}
curr = target;

// There is at most one digit left
// because u128::max / 10^19 / 10^19 is 3.
curr -= 1;
// There is at most one digit left
// because u128::max / 10^19 / 10^19 is 3.
curr -= 1;
unsafe {
*buf_ptr.offset(curr) = (n as u8) + b'0';
}
}
}

if !is_nonnegative {
curr -= 1;
if !is_nonnegative {
curr -= 1;
unsafe {
*buf_ptr.offset(curr) = b'-';
}

let len = buf.len() - curr as usize;
let bytes = slice::from_raw_parts(buf_ptr.offset(curr), len);
str::from_utf8_unchecked(bytes)
}

let len = buf.len() - curr as usize;
let bytes = unsafe { slice::from_raw_parts(buf_ptr.offset(curr), len) };
unsafe { str::from_utf8_unchecked(bytes) }
}
}
)*};
Expand Down