Skip to content

dubverse-ai/MahaTTS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MahaTTS by Dubverse.ai

MahaTTS: An Open-Source Large Speech Generation Model

a Dubverse Black initiative

Open In Colab


Update

Currently we are working on making our TTS system more robust. Latency is still an issue. Updates could take time.

Next Up

We are currently training our large scale model. This will be a 1B parameter model, trained on 20K hours of data in 15 languages with 10 Indic Languages.

Description

MahaTTS, with Maha signifying 'Great' in Sanskrit, is a Text to Speech Model developed by Dubverse.ai. We drew inspiration from the Tortoise TTS model, but our model uniquely utilizes seamless M4t wav2vec2 for semantic token extraction. As this specific variant of wav2vec2 is trained on multilingual data, it enhances our model's scalability across different languages.

We are providing access to pretrained model checkpoints, which are ready for inference and available for commercial use.

Capabilities

Within a single model,

  • generate voices in multiple seen and unseen speaker identities (voice cloning)
  • generate voices in multiple langauges (multilingual and cross-lingual voice cloning)
  • copy the style of speech from one speaker to another (cross-lingual voice cloning with prosody and intonation transfer)

MahaTTS Architecture

MahaTTS Architecture

Updates

7-01-2024

  • Smolie English (smolie-en) and Smolie Indic (smolie-in) released!

13-11-2023

  • MahaTTS Open Sourced!

Installation

pip install git+https://github.com/dubverse-ai/MahaTTS.git
pip install maha-tts

api usage

#download example speakers ref files to copy the prosody from
!wget https://huggingface.co/Dubverse/MahaTTS/resolve/main/maha_tts/pretrained_models/infer_ref_wavs.zip
!unzip ./infer_ref_wavs.zip

import torch, glob
from maha_tts import load_models,infer_tts,config
from scipy.io.wavfile import write
from IPython.display import Audio,display

# PATH TO THE SPEAKERS WAV FILES
speaker =['/content/infer_ref_wavs/2272_152282_000019_000001/',
          '/content/infer_ref_wavs/2971_4275_000049_000000/',
          '/content/infer_ref_wavs/4807_26852_000062_000000/',
          '/content/infer_ref_wavs/6518_66470_000014_000002/']

Inferring smolie-en, the English Model

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
diff_model,ts_model,vocoder,diffuser = load_models('Smolie-en',device)
print('Using:',device)

speaker_num = 0 # @param ["0", "1", "2", "3"] {type:"raw"}
text = "I freakin love how Elon came to life the moment they started talking about gaming and specifically diablo, you can tell that he didn't want that part of the discussion to end, while Lex to move on to the next subject! Once a true gamer, always a true gamer!" # @param {type:"string"}

ref_clips = glob.glob(speaker[speaker_num]+'*.wav')
audio,sr = infer_tts(text,ref_clips,diffuser,diff_model,ts_model,vocoder)

write('/content/test.wav',sr,audio)

Inferring smolie-in, the Indic Multilingual Model

# SMOLIE-IN
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
diff_model,ts_model,vocoder,diffuser = load_models('Smolie-in',device)
print('Using:',device)

speaker_num = 0 # @param ["0", "1", "2", "3"] {type:"raw"}
text = "शाम के समय, आसमान में बिखरी हुई रंग-बिरंगी रौशनी से सजा हुआ नगर दृश्य एक रोमांटिक माहौल बना रहा था।" # @param {type:"string"}

langauge = 'hindi' # ['hindi','english','tamil', 'telugu', 'punjabi', 'marathi', 'gujarati', 'bengali', 'assamese']
language = torch.tensor(config.lang_index[langauge]).to(device).unsqueeze(0)

ref_clips = glob.glob(speaker[speaker_num]+'*.wav')
audio,sr = infer_tts(text,ref_clips,diffuser,diff_model,ts_model,vocoder,language)

write('/content/test.wav',sr,audio)

Roadmap

  • Smolie English (smolie-en): Trained on 9k hours of English Podcast data
  • Smolie Indic (smolie-in): Trained on 400 hour of IIT Madras TTS audio data across 9 Indian languages
  • Smolie Indic + English: Trained on big data (coming soon!)
  • Optimizations for inference (looking for contributors, check issues)

Sample Outputs

final-video.mp4

Technical Details

Model Params

Model (Smolie) Parameters Model Type Output
Text to Semantic (M1) 84 M Causal LM 10,001 Tokens
Semantic to MelSpec(M2) 430 M Diffusion 2x 80x Melspec
Hifi Gan Vocoder 13 M GAN Audio Waveform

Languages Supported

Language Status
English (en)
Hindi (in)
Indian English (in)
Bengali (in)
Tamil (in)
Telugu (in)
Punjabi (in)
Marathi (in)
Gujarati (in)
Assamese (in)

License

MahaTTS is licensed under the Apache 2.0 License.

🙏 Appreciation

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages