STACoRe: Spatio-Temporal and Action-Based Contrastive Representations for Reinforcement Learning in Atari
This repository provides the code to implement the STACoRe.
.
├── agents
│ └── stacore_agent.py # The agent script to select actions and optimize polices
├── environment
│ ├── env.py # Atari environment
├── networks
│ ├── stacore_network.py # Deep neural networks code needed to train STACoRe
├── tasks
│ ├── stacore.py # Code to train or test STACoRe
│ ├── stacore_test.py # Code used when testing in stacore.py
├── utils
│ ├── args.py # Arguments needed to run the code
│ ├── automatic.py # Upper confidence bound (UCB) algorithm code for automatic data augmentation
│ ├── layers.py # Deep neural networks initialization
│ ├── loss.py # STACoRe loss
│ ├── memory.py # Prioritized experience replay
│ ├── mypath.py # The path to saver or load the file
└── run_stacore.py # The main run code
The python version we used is 3.6.13.
pip install -r requirements.txt
python run_stacore.py