Skip to content

Commit

Permalink
Merge pull request NREL#4 from NREL/tuning_dev
Browse files Browse the repository at this point in the history
Tuning dev
  • Loading branch information
paulf81 authored Sep 11, 2019
2 parents eb47ff3 + e9be013 commit 6957816
Show file tree
Hide file tree
Showing 4 changed files with 413 additions and 129 deletions.
199 changes: 169 additions & 30 deletions WTC_toolbox/controller.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,61 +9,200 @@
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.

import numpy as numpy
import numpy as np
from ccblade import CCAirfoil, CCBlade
from scipy import interpolate, gradient

from WTC_toolbox import turbine as wtc_turbine

turbine = wtc_turbine.Turbine()

# Some useful constants
pi = np.pi
rad2deg = np.rad2deg(1)
deg2rad = np.deg2rad(1)

class Controller():
"""
Class controller can be used to read in / write out controller param files
And update tunings
Class controller used to calculate controller tunings parameters
"""

def __init__(self):
pass

def controller_params(self):
# Hard coded controller parameters for turbine. Using this until read_param_file is good to go
# - Coded for NREL 5MW

# Pitch Controller Parameters
self.zeta_pc = 0.7 # Pitch controller damping ratio (-)
self.omega_pc = 0.6 # Pitch controller natural frequency (rad/s)

# Torque Controller Parameters
self.zeta_vs = 0.7 # Torque controller damping ratio (-)
self.omega_vs = 0.3 # Torque controller natural frequency (rad/s)

# Other basic parameters
self.v_rated = 11.4 # Rated wind speed (m/s)

def tune_controller(self, turbine):
"""
Maybe just initialize the internal variables
This also lists what will need to be defined
Given a turbine model, tune the controller parameters
"""
# -------------Load Parameters ------------- #
# Re-define Turbine Parameters for shorthand
J = turbine.J # Total rotor inertial (kg-m^2)
rho = turbine.rho # Air density (kg/m^3)
R = turbine.RotorRad # Rotor radius (m)
Ar = np.pi*R**2 # Rotor area (m^2)
Ng = turbine.Ng # Gearbox ratio (-)
RRspeed = turbine.RRspeed # Rated rotor speed (rad/s)

# Load controller parameters
# - should be self.read_param_file() eventually, hard coded for now
self.controller_params()

# Re-define controller tuning parameters for shorthand
zeta_pc = self.zeta_pc # Pitch controller damping ratio
omega_pc = self.omega_pc # Pitch controller natural frequency (rad/s)
zeta_vs = self.zeta_vs # Torque controller damping ratio (-)
omega_vs = self.omega_vs # Torque controller natural frequency (rad/s)
v_rated = self.v_rated # Rated wind speed (m/s)
v_min = turbine.v_min # Cut in wind speed (m/s)
v_max = turbine.v_max # Cut out wind speed (m/s)

# -------------Define Operation Points ------------- #
TSR_rated = RRspeed*R/v_rated # TSR at rated

# separate wind speeds by operation regions
v_below_rated = np.arange(v_min,v_rated,0.1) # below rated
v_above_rated = np.arange(v_rated,v_max,0.1) # above rated
v = np.concatenate((v_below_rated, v_above_rated))

# separate TSRs by operations regions
TSR_below_rated = np.ones(len(v_below_rated))*turbine.Cp.TSR_opt # below rated
TSR_above_rated = RRspeed*R/v_above_rated # above rated
TSR_op = np.concatenate((TSR_below_rated, TSR_above_rated)) # operational TSRs

# Find expected operational Cp values
Cp_above_rated = turbine.Cp.interp_surface(0,TSR_above_rated[0]) # Cp during rated operation (not optimal). Assumes cut-in bld pitch to be 0
Cp_op_br = np.ones(len(v_below_rated)) * turbine.Cp.max # below rated
Cp_op_ar = Cp_above_rated * (TSR_above_rated/TSR_rated)**3 # above rated
Cp_op = np.concatenate((Cp_op_br, Cp_op_ar)) # operational CPs to linearize around
pitch_initial_rad = turbine.pitch_initial_rad
TSR_initial = turbine.TSR_initial

# initialize variables
pitch_op = np.empty(len(TSR_op))
dCp_beta = np.empty(len(TSR_op))
dCp_TSR = np.empty(len(TSR_op))
# ------------- Find Linearized State Matrices ------------- #

for i in range(len(TSR_op)):

# Find pitch angle as a function of expected operating CP for each TSR
self.Cp_TSR = np.ndarray.flatten(turbine.Cp.interp_surface(turbine.pitch_initial_rad, TSR_op[i])) # all Cp values for a given tsr
Cp_op[i] = np.clip(Cp_op[i], np.min(self.Cp_TSR), np.max(self.Cp_TSR)) # saturate Cp values to be on Cp surface
f_cp_pitch = interpolate.interp1d(self.Cp_TSR,pitch_initial_rad) # interpolate function for Cp(tsr) values
pitch_op[i] = f_cp_pitch(Cp_op[i]) # expected operation blade pitch values
dCp_beta[i], dCp_TSR[i] = turbine.Cp.interp_gradient(pitch_op[i],TSR_op[i]) # gradients of Cp surface in Beta and TSR directions

# Full Cp surface gradients
dCp_dbeta = dCp_beta/np.diff(pitch_initial_rad)[0]
dCp_dTSR = dCp_TSR/np.diff(TSR_initial)[0]

# Linearized system derivatives
dtau_dbeta = Ng/2*rho*Ar*R*(1/TSR_op)*dCp_dbeta*v**2
dtau_dlambda = Ng/2*rho*Ar*R*v**2*(1/(TSR_op**2))*(dCp_dTSR*TSR_op - Cp_op)
dlambda_domega = R/v/Ng
dtau_domega = dtau_dlambda*dlambda_domega

# Second order system coefficiencts
A = dtau_domega/J # Plant pole
B_tau = -Ng**2/J # Torque input
B_beta = dtau_dbeta/J # Blade pitch input

# Wind Disturbance Input
dlambda_dv = -(TSR_op/v)
dtau_dv = dtau_dlambda*dlambda_dv
B_v = dtau_dv/J # wind speed input - currently unused


# separate and define below and above rated parameters
A_vs = A[0:len(v_below_rated)] # below rated
A_pc = A[len(v_below_rated):len(v)] # above rated
B_tau = B_tau * np.ones(len(v_below_rated))
B_beta = B_beta[len(v_below_rated):len(v)]

# Find gain schedule
self.pc_gain_schedule = GainSchedule()
self.pc_gain_schedule.second_order_PI(zeta_pc, omega_pc,A_pc,B_beta,linearize=True,v=v_above_rated)
self.vs_gain_schedule = GainSchedule()
self.vs_gain_schedule.second_order_PI(zeta_vs, omega_vs,A_vs,B_tau,linearize=False,v=v_below_rated)

# Store some variables
self.v = v # Wind speed (m/s)
self.Cp_op = Cp_op
self.pitch_op = pitch_op
self.pitc_op_pc = pitch_op[len(v_below_rated):len(v)]
self.TSR_op = TSR_op
self.A = A
self.B_beta = B_beta

class GainSchedule():
def __init__(self):
'''
Gain Schedule class used to define gain schedules for desired closed loop dynamics
'''
pass

def second_order_PI(self,zeta,om_n,A,B,linearize=False,v=None):

# Linearize system coefficients w.r.t. wind speed if desired
if linearize:
print('Calculating second order PI gain schedule for linearized system pole location.')
pA = np.polyfit(v,A,1)
pB = np.polyfit(v,B,1)
A = pA[0]*v + pA[1]
B = pB[0]*v + pB[1]

# Calculate gain schedule
self.Kp = 1/B * (2*zeta*om_n + A)
self.Ki = om_n**2/B

class FileProcessing():
"""
Class ProcessFile can be used to read in / write out controller param files to update
"""

def __init__(self, controller):
"""
Process
"""

def read_param_file(self, param_file):
"""
Load the parameter files directly from a FAST input deck
"""
# Pitch Controller Parameters
self.PC_zeta = param_file.PC_zeta # Pitch controller damping ratio (-)
self.PC_om = param_file.PC_om # Pitch controller natural frequency (rad/s)
self.zeta_pc = param_file.PC_zeta # Pitch controller damping ratio (-)
self.omega_pc = param_file.PC_omega # Pitch controller natural frequency (rad/s)

# Torque Controller Parameters
self.VS_zeta = param_file.VS_zeta # Torque controller damping ratio (-)
self.VS_om = param_file.VS_om # Torque controller natural frequency (rad/s)
self.zeta_vs = param_file.VS_zeta # Torque controller damping ratio (-)
self.omega_vs = param_file.VS_omega # Torque controller natural frequency (rad/s)

# Setpoint Smoother Parameters
self.Kss_PC = param_file.Kss_PC # Pitch controller reference gain bias
self.Kss_VS = param_file.Kss_VS # Torque controller reference gain bias
self.Vmin = turbine.VS_Vmin # Cut-in wind speed (m/s)
self.Vrat = turbine.PC_Vrated # Rated wind speed (m/s)
self.Vmax = turbine.PC_Vmax # Cut-out wind speed (m/s), -- Does not need to be exact
self.v_min = turbine.VS_Vmin # Cut-in wind speed (m/s)
self.v_rated = turbine.PC_Vrated # Rated wind speed (m/s)
self.v_max = turbine.PC_Vmax # Cut-out wind speed (m/s), -- Does not need to be exact


def write_param_file(self, param_file):
"""
Load the parameter files directly from a FAST input deck
"""

def tune_controller(self, turbine):
"""
Given a turbine model, tune the controller parameters
"""

# Turbine Parameters
J = turbine.J # Total rotor inertial (kg-m^2)
rho = turbine.rho # Air density (kg/m^3)
R = turbine.RotorRad # Rotor radius (m)
Ar = pi*R^2 # Rotor area (m^2)
Ng = turbine.GBRatio # Gearbox ratio (-)
RRspeed = turbine.RRSpeed # Rated rotor speed (rad/s)

# Cp Surface
CpSurf = turbine.CpSurf # Matrix of Cp surface values
CpBeta = turbine.CpBeta # Vector of blade pitch angles corresponding to Cp surface (rad)
CpTSR = turbine.CpTSR # Vector of tip-speed-ratio values corresponding to Cp surface (rad)


Loading

0 comments on commit 6957816

Please sign in to comment.