Prune DNN using Alternating Direction Method of Multipliers (ADMM)
“A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers” (https://arxiv.org/abs/1804.03294)
If you use these models in your research, please cite:
@article{zhang2018systematic,
title={A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers},
author={Zhang, Tianyun and Ye, Shaokai and Zhang, Kaiqi and Tang, Jian and Wen, Wujie and Fardad, Makan and Wang, Yanzhi},
journal={arXiv preprint arXiv:1804.03294},
year={2018}
}
- lenet-5
- see
tensorflow-mnist-model
in this repository
- bvlc_alexnet (focus on weight reduction)
- [bvlc_alexnet_21x_total.caffemodel] (http://bit.ly/2JVwKFD)
- bvlc_alexnet (focus on conv reduction)
- [bvlc_alexnet_13_4x_conv.caffemodel] (http://bit.ly/2uNotPv)
- lenet-5 (top1 accuracy: 99.2%)
Layer | Weights | Weights after prune | Weights after prune % |
---|---|---|---|
conv1 | 0.5K | 0.1K | 20% |
conv2 | 25K | 2K | 8% |
fc1 | 400K | 3.6K | 0.9% |
fc2 | 5K | 0.35K | 7% |
Total | 430.5K | 6.05K | 1.4% |
- bvlc_alexnet (top5 accuracy: 80.2%, 40 iterations of ADMM)
Layer | Weights | Weights after prune | Weights after prune % |
---|---|---|---|
conv1 | 34.8K | 28.19K | 81% |
conv2 | 307.2K | 61.44K | 20% |
conv3 | 884.7K | 168.09K | 19% |
conv4 | 663.5K | 132.7K | 20% |
conv5 | 442.4K | 88.48K | 20% |
fc1 | 37.7M | 1.06M | 2.8% |
fc2 | 16.8M | 0.99M | 5.9% |
fc3 | 4.1M | 0.38M | 9.3% |
Total | 60.9M | 2.9M | 4.76% |