Skip to content

Commit

Permalink
v0.14.1
Browse files Browse the repository at this point in the history
IssueID #3918: v0.14.1

- Readded baseline unit tests
- Readded large_number_of_peaks removed in v0.9.0
- Readded mean_autocorrelation removed in v0.9.0
- Reverted to original augmented_dickey_fuller that was changed in v0.9.0
- Reverted to original fft_coefficient that was changed in v0.9.0
- Readded mean_abs_change_quantiles that was removed in v0.9.0
- Readded the original time_reversal_asymmetry_statistic that was in use pre
  v0.9.0 - blue-yonder#198
- Readded original autocorrelation that was removed in v0.9.0
- Disabled partial_autocorrelation added in v0.10.0
- Disabled cid_ce added in v0.11.1
- Disabled fft_aggregated added in v0.11.0
- Disabled Fix agg change made to agg_autocorrelation added in v0.11.1
blue-yonder@a53fb6a
- Changed to new value_count and range_count method added in v0.11.1
- Configured settings for pre v0.9.0 features
- Hardcoded TSFRESH_BASELINE_VERSION = '0.9.1' in tests
- Disabled linear_trend_timewise added in v0.12.0
- Readded tsfresh/examples/test_tsfresh_baseline_dataset.py which was removed
  in v0.12.0
- Use v0.11.01 value_count and range_count method not as per v0.13.0
- Configured settings for pre v0.9.0 features
- Hardcoded TSFRESH_BASELINE_VERSION = '0.14.1' in tests

Added:
tests/baseline/tsfresh-0.1.2.py2.data.json.features.transposed.csv
tests/baseline/tsfresh-0.3.0.py2.data.json.features.transposed.csv
tests/baseline/tsfresh-0.3.0.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.3.1.py2.data.json.features.transposed.csv
tests/baseline/tsfresh-0.3.1.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.4.0.py2.data.json.features.transposed.csv
tests/baseline/tsfresh-0.4.0.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.5.0.py2.data.json.features.transposed.csv
tests/baseline/tsfresh-0.5.0.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.5.1.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.6.0.py2.data.json.features.transposed.csv
tests/baseline/tsfresh-0.6.0.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.6.1.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.7.2.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.8.2.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.9.1.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.10.2.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.11.3.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.12.1.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.13.1.py3.data.json.features.transposed.csv
tests/baseline/tsfresh-0.14.1.py3.data.json.features.transposed.csv
tests/baseline/tsfresh_features_test.py
Modified:
CHANGES.rst
README.md
tsfresh/feature_extraction/feature_calculators.py
tsfresh/feature_extraction/settings.py
  • Loading branch information
earthgecko committed Dec 31, 2020
1 parent 6a695e5 commit 6b1b94c
Show file tree
Hide file tree
Showing 27 changed files with 5,325 additions and 53 deletions.
63 changes: 62 additions & 1 deletion CHANGES.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,11 @@ Changelog

tsfresh uses `Semantic Versioning <http://semver.org/>`_

Version 0.14.1
==============

- Merged 0.14.0 changes


Version 0.14.0
==============
Expand All @@ -25,6 +30,10 @@ Version 0.14.0
- Replace Benjamini-Hochberg implementation with statsmodels implementation (#570)
- Fix the kernel and the naming of a notebook (#626)

Version 0.13.1
==============

- Reverted to the v0.11.1 value_count setting

Version 0.13.0
==============
Expand Down Expand Up @@ -52,6 +61,11 @@ Version 0.13.0
- Improve performance with Numpy's sum function (#567)
- Optimize mean_change (fixes issue #542) and correct documentation (#574)

Version 0.12.1
==============

- Disabled linear_trend_timewise added in v0.12.0
- Readded tsfresh/examples/test_tsfresh_baseline_dataset.py which was removed in v0.12.0

Version 0.12.0
==============
Expand All @@ -67,6 +81,12 @@ Version 0.12.0
- enable the RelevantFeatureAugmenter to be used in cross validated pipelines
- increased scipy dependency to 1.2.0

Version 0.11.3
==============
- Disabled new feature calculators:
- fft_aggregated
- cid_ce
- reverted to the original mean_second_derivate_central from mean_second_derivative_central

Version 0.11.2
==============
Expand All @@ -85,7 +105,7 @@ Version 0.11.1
==============
- general performance improvements
- removed hard pinning of dependencies
- fixed bugs
- fixed
- the stock price forecasting notebook
- the multi classification notebook

Expand All @@ -99,6 +119,11 @@ Version 0.11.0
- add columns_to_ignore parameter to from_columns method
- add distribution module, contains support for distributed feature extraction on Dask

Version 0.10.2
==============
- Disabled new feature calculators:
- partial autocorrelation

Version 0.10.1
==============
- split test suite into unit and integration tests
Expand All @@ -118,6 +143,26 @@ Version 0.10.0
- fixed the following bugs
- improperly quotation of dickey fuller settings

Version 0.9.1
=============
- Disabled new feature calculators:
- ratio_beyond_r_sigma
- energy_ratio_by_chunks
- number_crossing_m
- c3
- angle & abs for fft coefficients
- agg_autocorrelation
- p-Value and usedLag for augmented_dickey_fuller
- change_quantiles
- reverted the calculation of the following features:
- fft_coefficients
- autocorrelation
- time_reversal_asymmetry_statistic
- readded the following feature calculators:
- large_number_of_peak
- mean_autocorrelation
- mean_abs_change_quantiles

Version 0.9.0
=============
- new feature calculators:
Expand Down Expand Up @@ -172,6 +217,11 @@ Version 0.8.0
- added chapter in docs about the new API
- adjusted old notebooks and documentation to new API

Version 0.7.2
=============

- readded baseline unit tests

Version 0.7.1
=============

Expand All @@ -198,6 +248,12 @@ Version 0.7.0
- an index with same name as id_column was breaking parallelization
- friedrich_coefficients and max_langevin_fixed_point were occasionally stalling

Version 0.6.1
=============

- Disabled new feature: estimation of largest fixed point of deterministic dynamics
- Disabled _esitmate_friedrich_coefficients, friedrich_coefficients and max_langevin_fixed_point

Version 0.6.0
=============

Expand All @@ -207,6 +263,11 @@ Version 0.6.0
- remove no logging handler warning
- fixed bug in the RelevantFeatureAugmenter regarding the evaluate_only_added_features parameters

Version 0.5.1
=============

- Disabled new feature and feature renaming: sum_of_recurring_values, sum_of_recurring_data_points

Version 0.5.0
=============

Expand Down
16 changes: 16 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,22 @@
[![Downloads](https://pepy.tech/badge/tsfresh)](https://pepy.tech/project/tsfresh)


# MODIFIED FORK

This repository contains a *MODIFIED FORK* of the tsfresh python package for use with Skyline.
This modified fork maintains the features extracted at v0.4.0 but moves this tsfresh version forward in line with blue-yonder/tsfresh in terms of tsfresh internals and dependencies, etc.

- New features added to blue-yonder/tsfresh are disabled in this version
- Original methods for features are maintained even if they are changed in blue-yonder/tsfresh

*NOTE*: these branches/versions are tested against the tests/baseline/tsfresh_features_test.py, which was
removed from blue-yonder/tsfresh in v0.7.0 but has been readded to this fork. These branches/versions are
only tested via the Skyline build tests, they *are not* tested against the tsfresh tests. Seeing as this
fork follows the blue-yonder/tsfresh versions and retrospectively makes backwards compatible changes to the
settings and feature_calculators.py which work with the Skyline tests. Therefore these changes are not
currently backported to the tsfresh tests themselves and the tsfresh tests will fail if run against any
of theses branches.

# tsfresh

This repository contains the *TSFRESH* python package. The abbreviation stands for
Expand Down
207 changes: 207 additions & 0 deletions tests/baseline/tsfresh-0.1.2.py2.data.json.features.transposed.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
,tsfresh_features_test
value__symmetry_looking__r_0.65,1.0
value__mean_abs_change_quantiles__qh_1.0__ql_0.0,46.6949152542
value__absolute_sum_of_changes,2755.0
value__augmented_dickey_fuller,-0.804122034203
value__large_number_of_peaks__n_3,1.0
value__large_number_of_peaks__n_5,0.0
value__last_location_of_minimum,0.0333333333333
value__mean_abs_change_quantiles__qh_0.4__ql_0.0,35.6
value__mean_abs_change_quantiles__qh_0.4__ql_0.2,12.0
value__minimum,9856.0
value__mean_abs_change_quantiles__qh_0.4__ql_0.6,0.0
value__mean_abs_change_quantiles__qh_0.4__ql_0.8,0.0
value__maximum,10123.0
value__value_count__value_-inf,0.0
value__number_peaks__n_1,21.0
value__number_peaks__n_3,9.0
value__longest_strike_above_mean,10.0
value__number_peaks__n_5,4.0
value__first_location_of_minimum,0.0166666666667
value__large_standard_deviation__r_0.25,0.0
value__large_number_of_peaks__n_1,1.0
value__count_above_mean,29.0
value__symmetry_looking__r_0.75,1.0
value__mean_abs_change,46.6949152542
value__mean_change,2.38983050847
value__value_count__value_1,0.0
value__value_count__value_0,0.0
value__mean_abs_change_quantiles__qh_0.4__ql_0.4,0.0
value__mean_autocorrelation,1.1720475294
value__autocorrelation__lag_5,0.464639525765
value__median,9981.0
value__symmetry_looking__r_0.85,1.0
value__mean_abs_change_quantiles__qh_0.8__ql_0.4,20.0
value__symmetry_looking__r_0.05,1.0
value__mean_abs_change_quantiles__qh_0.8__ql_0.6,13.0
value__value_count__value_inf,0.0
value__mean_abs_change_quantiles__qh_0.8__ql_0.0,43.0256410256
value__mean_abs_change_quantiles__qh_0.8__ql_0.2,31.619047619
value__large_standard_deviation__r_0.45,0.0
value__mean_abs_change_quantiles__qh_0.8__ql_0.8,0.0
value__autocorrelation__lag_6,0.512480168514
value__autocorrelation__lag_7,0.653853495147
value__autocorrelation__lag_4,0.535012070945
value__last_location_of_maximum,0.966666666667
value__autocorrelation__lag_2,0.367658131978
value__autocorrelation__lag_3,0.411575406169
value__autocorrelation__lag_0,1.0
value__autocorrelation__lag_1,0.51547994425
value__autocorrelation__lag_8,0.360082254297
value__autocorrelation__lag_9,0.217484000968
value__variance_larger_than_standard_deviation,1.0
value__variance,3196.67638889
value__mean,9986.08333333
value__mean_abs_change_quantiles__qh_0.6__ql_0.8,0.0
value__mean_abs_change_quantiles__qh_0.6__ql_0.6,0.0
value__mean_abs_change_quantiles__qh_0.6__ql_0.4,6.0
value__mean_abs_change_quantiles__qh_0.6__ql_0.2,23.1818181818
value__mean_abs_change_quantiles__qh_0.6__ql_0.0,42.25
value__symmetry_looking__r_0.15,1.0
value__mean_second_derivate_central,0.706896551724
value__skewness,-0.135422921254
value__length,60.0
value__first_location_of_maximum,0.95
value__mean_abs_change_quantiles__qh_1.0__ql_0.2,42.4634146341
value__mean_abs_change_quantiles__qh_1.0__ql_0.4,45.0740740741
value__mean_abs_change_quantiles__qh_1.0__ql_0.6,41.125
value__mean_abs_change_quantiles__qh_1.0__ql_0.8,58.3333333333
value__range_count__max_1__min_-1,0.0
value__kurtosis,-0.0289015217515
value__symmetry_looking__r_0.25,1.0
value__time_reversal_asymmetry_statistic__lag_3,1993963105.11
value__abs_energy,5983503421.0
value__time_reversal_asymmetry_statistic__lag_2,1215832201.59
value__time_reversal_asymmetry_statistic__lag_1,836027272.276
value__symmetry_looking__r_0.35,1.0
value__large_standard_deviation__r_0.3,0.0
value__large_standard_deviation__r_0.2,1.0
value__large_standard_deviation__r_0.1,1.0
value__large_standard_deviation__r_0.0,1.0
value__large_standard_deviation__r_0.4,0.0
value__large_standard_deviation__r_0.15,1.0
value__standard_deviation,56.5391580136
value__binned_entropy__max_bins_10,2.11974362674
value__large_standard_deviation__r_0.35,0.0
value__symmetry_looking__r_0.95,1.0
value__longest_strike_below_mean,9.0
value__sum_values,599165.0
value__symmetry_looking__r_0.45,1.0
value__symmetry_looking__r_0.6,1.0
value__symmetry_looking__r_0.7,1.0
value__symmetry_looking__r_0.4,1.0
value__symmetry_looking__r_0.5,1.0
value__symmetry_looking__r_0.2,1.0
value__symmetry_looking__r_0.3,1.0
value__symmetry_looking__r_0.0,0.0
value__symmetry_looking__r_0.1,1.0
value__has_duplicate,1.0
value__symmetry_looking__r_0.8,1.0
value__symmetry_looking__r_0.9,1.0
value__value_count__value_nan,0.0
value__mean_abs_change_quantiles__qh_0.2__ql_0.8,0.0
value__large_standard_deviation__r_0.05,1.0
value__mean_abs_change_quantiles__qh_0.2__ql_0.2,0.0
value__has_duplicate_max,0.0
value__mean_abs_change_quantiles__qh_0.2__ql_0.0,29.4
value__mean_abs_change_quantiles__qh_0.2__ql_0.6,0.0
value__mean_abs_change_quantiles__qh_0.2__ql_0.4,0.0
value__number_cwt_peaks__n_5,6.0
value__number_cwt_peaks__n_1,9.0
value__has_duplicate_min,0.0
value__symmetry_looking__r_0.55,1.0
value__count_below_mean,31.0
value__quantile__q_0.1,9909.9
value__quantile__q_0.2,9937.8
value__quantile__q_0.3,9962.7
value__quantile__q_0.4,9975.6
value__quantile__q_0.6,10004.8
value__quantile__q_0.7,10017.6
value__quantile__q_0.8,10033.2
value__quantile__q_0.9,10048.9
value__ar_coefficient__k_10__coeff_0,904.439185079
value__ar_coefficient__k_10__coeff_1,0.163578948116
value__ar_coefficient__k_10__coeff_2,-0.0432470001474
value__ar_coefficient__k_10__coeff_3,-0.066542370683
value__ar_coefficient__k_10__coeff_4,0.283685319392
value__index_mass_quantile__q_0.1,0.116666666667
value__index_mass_quantile__q_0.2,0.216666666667
value__index_mass_quantile__q_0.3,0.316666666667
value__index_mass_quantile__q_0.4,0.416666666667
value__index_mass_quantile__q_0.6,0.616666666667
value__index_mass_quantile__q_0.7,0.716666666667
value__index_mass_quantile__q_0.8,0.816666666667
value__index_mass_quantile__q_0.9,0.916666666667
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_2",-40.2658469608
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_2",5485.74118013
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_2",7535.02284446
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_3__w_2",6017.19200793
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_2",3308.43040143
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_2",1295.74336719
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_2",336.632431542
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_2",39.9167672586
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_2",17.9554856918
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_2",50.2590300879
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_2",35.9047024745
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_2",-24.146023861
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_2",-61.8871252413
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_2",-33.6685043252
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_2",24.2088382102
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_5",-20.2575971343
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_5",3771.32544152
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_5",7120.96092089
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_3__w_5",9670.13169234
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_5",11207.9294065
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_5",11696.157551
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_5",11253.943681
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_5",10110.8994435
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_5",8545.47382822
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_5",6826.23862162
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_5",5169.35388762
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_5",3717.9693031
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_5",2542.01968757
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_5",1652.10185551
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_5",1019.57078515
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_10",836.64197854
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_10",3543.0796763
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_10",6167.81421141
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_3__w_10",8634.72484753
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_10",10876.5237364
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_10",12835.3989402
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_10",14466.1094898
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_10",15737.7224437
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_10",16639.5484491
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_10",17169.076641
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_10",17339.7697657
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_10",17183.302683
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_10",16737.7538459
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_10",16046.1857704
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_10",15154.9058723
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_20",18718.9572589
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_20",20645.6350314
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_20",22554.4207082
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_3__w_20",24433.795925
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_20",26275.1871817
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_20",28065.040621
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_20",29788.0657403
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_20",31428.5198149
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_20",32985.8151195
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_20",34437.5408409
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_20",35770.923232
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_20",36992.8147885
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_20",38098.1939127
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_20",39076.9898057
"value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_20",39919.0572501
value__spkt_welch_density__coeff_2,1843.82117181
value__spkt_welch_density__coeff_5,2859.9769052
value__spkt_welch_density__coeff_8,2536.99547001
value__fft_coefficient__coeff_0,178744.0
value__fft_coefficient__coeff_1,-0.804510387479
value__fft_coefficient__coeff_2,-53.1328616833
value__fft_coefficient__coeff_3,-338.0
value__fft_coefficient__coeff_4,122.445039355
value__fft_coefficient__coeff_5,-58.9307961342
value__fft_coefficient__coeff_6,13.0
value__fft_coefficient__coeff_7,112.235306522
value__fft_coefficient__coeff_8,118.187822328
value__fft_coefficient__coeff_9,-248.0
Loading

0 comments on commit 6b1b94c

Please sign in to comment.