Skip to content
forked from tiny-dnn/tiny-dnn

deep learning(convolutional neural networks) in C++11/TBB

Notifications You must be signed in to change notification settings

elador/tiny-cnn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tiny-cnn: A C++11 implementation of deep learning (convolutional neural networks)

tiny-cnn is a C++11 implementation of deep learning (convolutional neural networks).

design principle

  • fast, without GPU
    • with TBB threading and SSE/AVX vectorization
    • 98.8% accuracy on MNIST in 13 minutes training (@Core i7-3520M)
  • header only, policy-based design
  • small dependency & simple implementation

supported networks

layer-types

  • fully-connected layer
  • fully-connected layer (with dropout)
  • convolutional layer
  • average pooling layer

activation functions

  • tanh
  • sigmoid
  • rectified linear
  • identity

loss functions

  • cross-entropy
  • mean-squared-error

optimization algorithm

  • stochastic gradient descent (with/without L2 normalization)
  • stochastic gradient levenberg marquardt

dependencies

  • boost C++ library
  • Intel TBB

sample code

construct convolutional neural networks

#include "tiny_cnn.h"
using namespace tiny_cnn;
using namespace tiny_cnn::activation;

void cunstruct_cnn() {
    using namespace tiny_cnn;

    // specify loss-function and optimization-algorithm
    typedef network<mse, gradient_descent> CNN;
    CNN mynet;

    // tanh, 32x32 input, 5x5 window, 1-6 feature-maps convolution
    convolutional_layer<CNN, tan_h> C1(32, 32, 5, 1, 6);

    // tanh, 28x28 input, 6 feature-maps, 2x2 subsampling
    average_pooling_layer<CNN, tan_h> S2(28, 28, 6, 2);

    // fully-connected layers
    fully_connected_layer<CNN, sigmoid> F3(14 * 14 * 6, 120);
    fully_connected_layer<CNN, identity> F4(120, 10);

    // connect all
    mynet.add(&C1); mynet.add(&S2); mynet.add(&F3); mynet.add(&F4);

    assert(mynet.in_dim() == 32 * 32);
    assert(mynet.out_dim() == 10);
}

construct multi-layer perceptron(mlp)

#include "tiny_cnn.h"
using namespace tiny_cnn;
using namespace tiny_cnn::activation;

void cunstruct_mlp() {
    typedef network<mse, gradient_descent> MLP;
    MLP mynet;

    fully_connected_layer<MLP, sigmoid> F1(32 * 32, 300);
    fully_connected_layer<MLP, identity> F2(300, 10);

    mynet.add(&F1); mynet.add(&F2);

    assert(mynet.in_dim() == 32 * 32);
    assert(mynet.out_dim() == 10);
}

another way to construct mlp

#include "tiny_cnn.h"
using namespace tiny_cnn;
using namespace tiny_cnn::activation;

void cunstruct_mlp() {
    auto mynet = make_mlp<mse, gradient_descent, tan_h>({ 32 * 32, 300, 10 });

    assert(mynet.in_dim() == 32 * 32);
    assert(mynet.out_dim() == 10);
}

more sample, read main.cpp

build sample program

gcc(4.6~)

without tbb

./waf configure --BOOST_ROOT=your-boost-root
./waf build

with tbb

./waf configure --TBB --TBB_ROOT=your-tbb-root --BOOST_ROOT=your-boost-root
./waf build

with tbb and SSE/AVX

./waf configure --AVX --TBB --TBB_ROOT=your-tbb-root --BOOST_ROOT=your-boost-root
./waf build


./waf configure --SSE --TBB --TBB_ROOT=your-tbb-root --BOOST_ROOT=your-boost-root
./waf build

or edit inlude/config.h to customize default behavior.

vc(2012~)

open vc/tiny_cnn.sln and build in release mode.

license

The BSD 3-Clause License

About

deep learning(convolutional neural networks) in C++11/TBB

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 57.3%
  • C 41.5%
  • Python 1.2%