Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ML] Extends support for anomaly charts when model plot is enabled #34079

Merged
merged 2 commits into from
Mar 29, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 47 additions & 0 deletions x-pack/plugins/ml/common/util/__tests__/anomaly_utils.js
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ import {
getMultiBucketImpactLabel,
getEntityFieldName,
getEntityFieldValue,
getEntityFieldList,
showActualForFunction,
showTypicalForFunction,
isRuleSupported,
Expand Down Expand Up @@ -349,6 +350,52 @@ describe('ML - anomaly utils', () => {

});

describe('getEntityFieldList', () => {
it('returns an empty list for a record with no by, over or partition fields', () => {
expect(getEntityFieldList(noEntityRecord)).to.be.empty();
});

it('returns correct list for a record with a by field', () => {
expect(getEntityFieldList(byEntityRecord)).to.eql([
{
fieldName: 'airline',
fieldValue: 'JZA',
fieldType: 'by'
}
]);
});

it('returns correct list for a record with a partition field', () => {
expect(getEntityFieldList(partitionEntityRecord)).to.eql([
{
fieldName: 'airline',
fieldValue: 'AAL',
fieldType: 'partition'
}
]);
});

it('returns correct list for a record with an over field', () => {
expect(getEntityFieldList(overEntityRecord)).to.eql([
{
fieldName: 'clientip',
fieldValue: '37.157.32.164',
fieldType: 'over'
}
]);
});

it('returns correct list for a record with a by and over field', () => {
expect(getEntityFieldList(rareEntityRecord)).to.eql([
{
fieldName: 'clientip',
fieldValue: '173.252.74.112',
fieldType: 'over'
}
]);
});
});

describe('showActualForFunction', () => {
it('returns true for expected function descriptions', () => {
expect(showActualForFunction('count')).to.be(true);
Expand Down
183 changes: 141 additions & 42 deletions x-pack/plugins/ml/common/util/__tests__/job_utils.js
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,8 @@ import {
calculateDatafeedFrequencyDefaultSeconds,
isTimeSeriesViewJob,
isTimeSeriesViewDetector,
isTimeSeriesViewFunction,
isSourceDataChartableForDetector,
isModelPlotChartableForDetector,
getPartitioningFieldNames,
isModelPlotEnabled,
isJobVersionGte,
Expand Down Expand Up @@ -158,47 +159,145 @@ describe('ML - job utils', () => {

});

describe('isTimeSeriesViewFunction', () => {

it('returns true for expected functions', () => {
expect(isTimeSeriesViewFunction('count')).to.be(true);
expect(isTimeSeriesViewFunction('low_count')).to.be(true);
expect(isTimeSeriesViewFunction('high_count')).to.be(true);
expect(isTimeSeriesViewFunction('non_zero_count')).to.be(true);
expect(isTimeSeriesViewFunction('low_non_zero_count')).to.be(true);
expect(isTimeSeriesViewFunction('high_non_zero_count')).to.be(true);
expect(isTimeSeriesViewFunction('distinct_count')).to.be(true);
expect(isTimeSeriesViewFunction('low_distinct_count')).to.be(true);
expect(isTimeSeriesViewFunction('high_distinct_count')).to.be(true);
expect(isTimeSeriesViewFunction('metric')).to.be(true);
expect(isTimeSeriesViewFunction('mean')).to.be(true);
expect(isTimeSeriesViewFunction('low_mean')).to.be(true);
expect(isTimeSeriesViewFunction('high_mean')).to.be(true);
expect(isTimeSeriesViewFunction('median')).to.be(true);
expect(isTimeSeriesViewFunction('low_median')).to.be(true);
expect(isTimeSeriesViewFunction('high_median')).to.be(true);
expect(isTimeSeriesViewFunction('min')).to.be(true);
expect(isTimeSeriesViewFunction('max')).to.be(true);
expect(isTimeSeriesViewFunction('sum')).to.be(true);
expect(isTimeSeriesViewFunction('low_sum')).to.be(true);
expect(isTimeSeriesViewFunction('high_sum')).to.be(true);
expect(isTimeSeriesViewFunction('non_null_sum')).to.be(true);
expect(isTimeSeriesViewFunction('low_non_null_sum')).to.be(true);
expect(isTimeSeriesViewFunction('high_non_null_sum')).to.be(true);
expect(isTimeSeriesViewFunction('rare')).to.be(true);
});

it('returns false for expected functions', () => {
expect(isTimeSeriesViewFunction('freq_rare')).to.be(false);
expect(isTimeSeriesViewFunction('info_content')).to.be(false);
expect(isTimeSeriesViewFunction('low_info_content')).to.be(false);
expect(isTimeSeriesViewFunction('high_info_content')).to.be(false);
expect(isTimeSeriesViewFunction('varp')).to.be(false);
expect(isTimeSeriesViewFunction('low_varp')).to.be(false);
expect(isTimeSeriesViewFunction('high_varp')).to.be(false);
expect(isTimeSeriesViewFunction('time_of_day')).to.be(false);
expect(isTimeSeriesViewFunction('time_of_week')).to.be(false);
expect(isTimeSeriesViewFunction('lat_long')).to.be(false);
describe('isSourceDataChartableForDetector', () => {

const job = {
analysis_config: {
detectors: [
{ function: 'count' }, // 0
{ function: 'low_count' }, // 1
{ function: 'high_count' }, // 2
{ function: 'non_zero_count' }, // 3
{ function: 'low_non_zero_count' }, // 4
{ function: 'high_non_zero_count' }, // 5
{ function: 'distinct_count' }, // 6
{ function: 'low_distinct_count' }, // 7
{ function: 'high_distinct_count' }, // 8
{ function: 'metric' }, // 9
{ function: 'mean' }, // 10
{ function: 'low_mean' }, // 11
{ function: 'high_mean' }, // 12
{ function: 'median' }, // 13
{ function: 'low_median' }, // 14
{ function: 'high_median' }, // 15
{ function: 'min' }, // 16
{ function: 'max' }, // 17
{ function: 'sum' }, // 18
{ function: 'low_sum' }, // 19
{ function: 'high_sum' }, // 20
{ function: 'non_null_sum' }, // 21
{ function: 'low_non_null_sum' }, // 22
{ function: 'high_non_null_sum' }, // 23
{ function: 'rare' }, // 24
{ function: 'count', 'by_field_name': 'mlcategory', }, // 25
{ function: 'count', 'by_field_name': 'hrd', }, // 26
{ function: 'freq_rare' }, // 27
{ function: 'info_content' }, // 28
{ function: 'low_info_content' }, // 29
{ function: 'high_info_content' }, // 30
{ function: 'varp' }, // 31
{ function: 'low_varp' }, // 32
{ function: 'high_varp' }, // 33
{ function: 'time_of_day' }, // 34
{ function: 'time_of_week' }, // 35
{ function: 'lat_long' }, // 36
{ function: 'mean', 'field_name': 'NetworkDiff' }, //37
]
},
datafeed_config: {
script_fields: {
hrd: {
script: {
inline: 'return domainSplit(doc["query"].value, params).get(1);',
lang: 'painless'
}
},
NetworkDiff: {
script: {
source: 'doc["NetworkOut"].value - doc["NetworkIn"].value',
lang: 'painless'
}
}
}
}
};

it('returns true for expected detectors', () => {
expect(isSourceDataChartableForDetector(job, 0)).to.be(true);
expect(isSourceDataChartableForDetector(job, 1)).to.be(true);
expect(isSourceDataChartableForDetector(job, 2)).to.be(true);
expect(isSourceDataChartableForDetector(job, 3)).to.be(true);
expect(isSourceDataChartableForDetector(job, 4)).to.be(true);
expect(isSourceDataChartableForDetector(job, 5)).to.be(true);
expect(isSourceDataChartableForDetector(job, 6)).to.be(true);
expect(isSourceDataChartableForDetector(job, 7)).to.be(true);
expect(isSourceDataChartableForDetector(job, 8)).to.be(true);
expect(isSourceDataChartableForDetector(job, 9)).to.be(true);
expect(isSourceDataChartableForDetector(job, 10)).to.be(true);
expect(isSourceDataChartableForDetector(job, 11)).to.be(true);
expect(isSourceDataChartableForDetector(job, 12)).to.be(true);
expect(isSourceDataChartableForDetector(job, 13)).to.be(true);
expect(isSourceDataChartableForDetector(job, 14)).to.be(true);
expect(isSourceDataChartableForDetector(job, 15)).to.be(true);
expect(isSourceDataChartableForDetector(job, 16)).to.be(true);
expect(isSourceDataChartableForDetector(job, 17)).to.be(true);
expect(isSourceDataChartableForDetector(job, 18)).to.be(true);
expect(isSourceDataChartableForDetector(job, 19)).to.be(true);
expect(isSourceDataChartableForDetector(job, 20)).to.be(true);
expect(isSourceDataChartableForDetector(job, 21)).to.be(true);
expect(isSourceDataChartableForDetector(job, 22)).to.be(true);
expect(isSourceDataChartableForDetector(job, 23)).to.be(true);
expect(isSourceDataChartableForDetector(job, 24)).to.be(true);
});

it('returns false for expected detectors', () => {
expect(isSourceDataChartableForDetector(job, 25)).to.be(false);
expect(isSourceDataChartableForDetector(job, 26)).to.be(false);
expect(isSourceDataChartableForDetector(job, 27)).to.be(false);
expect(isSourceDataChartableForDetector(job, 28)).to.be(false);
expect(isSourceDataChartableForDetector(job, 29)).to.be(false);
expect(isSourceDataChartableForDetector(job, 30)).to.be(false);
expect(isSourceDataChartableForDetector(job, 31)).to.be(false);
expect(isSourceDataChartableForDetector(job, 32)).to.be(false);
expect(isSourceDataChartableForDetector(job, 33)).to.be(false);
expect(isSourceDataChartableForDetector(job, 34)).to.be(false);
expect(isSourceDataChartableForDetector(job, 35)).to.be(false);
expect(isSourceDataChartableForDetector(job, 36)).to.be(false);
expect(isSourceDataChartableForDetector(job, 37)).to.be(false);
});
});

describe('isModelPlotChartableForDetector', () => {
const job1 = {
analysis_config: {
detectors: [
{ function: 'count' }
]
}
};

const job2 = {
analysis_config: {
detectors: [
{ function: 'count' },
{ function: 'info_content' }
]
},
model_plot_config: {
enabled: true
}
};

it('returns false when model plot is not enabled', () => {
expect(isModelPlotChartableForDetector(job1, 0)).to.be(false);
});

it('returns true for count detector when model plot is enabled', () => {
expect(isModelPlotChartableForDetector(job2, 0)).to.be(true);
});

it('returns true for info_content detector when model plot is enabled', () => {
expect(isModelPlotChartableForDetector(job2, 1)).to.be(true);
});
});

Expand Down
34 changes: 34 additions & 0 deletions x-pack/plugins/ml/common/util/anomaly_utils.js
Original file line number Diff line number Diff line change
Expand Up @@ -173,6 +173,40 @@ export function getEntityFieldValue(record) {
return undefined;
}

// Returns the list of partitioning entity fields for the source record as a list
// of objects in the form { fieldName: airline, fieldValue: AAL, fieldType: partition }
export function getEntityFieldList(record) {
const entityFields = [];
if (record.partition_field_name !== undefined) {
entityFields.push({
fieldName: record.partition_field_name,
fieldValue: record.partition_field_value,
fieldType: 'partition'
});
}

if (record.over_field_name !== undefined) {
entityFields.push({
fieldName: record.over_field_name,
fieldValue: record.over_field_value,
fieldType: 'over'
});
}

// For jobs with by and over fields, don't add the 'by' field as this
// field will only be added to the top-level fields for record type results
// if it also an influencer over the bucket.
if (record.by_field_name !== undefined && record.over_field_name === undefined) {
entityFields.push({
fieldName: record.by_field_name,
fieldValue: record.by_field_value,
fieldType: 'by'
});
}

return entityFields;
}

// Returns whether actual values should be displayed for a record with the specified function description.
// Note that the 'function' field in a record contains what the user entered e.g. 'high_count',
// whereas the 'function_description' field holds a ML-built display hint for function e.g. 'count'.
Expand Down
Loading