-
Notifications
You must be signed in to change notification settings - Fork 64
[ML] Improve forecasting for time series with step changes #2591
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
valeriy42
approved these changes
Nov 2, 2023
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good work on fixing the problem with fat tail distributions. I have just a couple of comments regarding readability.
tveasey
added a commit
that referenced
this pull request
Nov 3, 2023
We model the level of a time series which we've observed having step discontinuities via a Markov process for forecasting. Specifically, we estimate the historical step size distribution and the distribution of the steps in time and as a function of the time series value. For this second part we use an online naive Bayes model to estimate the probability that at any given point in a roll out for forecasting we will get a step. This approach generally works well unless we're in the tails of the distribution values we've observed for the time series historically when we roll out. In this case, our prediction probability are very sensitive to the tail behaviour of the distributions we fit to the time series values where we saw a step and sometimes we predict far too many steps as a result. We can detect this case: when we're in the tails of time series value distribution. This change does this and stops predicting changes in such cases, which avoids pathologies. This fixes #2466.
Do you think it would be possible that Fix could be applied to v8.11.? |
Done in #2597. |
tveasey
added a commit
that referenced
this pull request
Dec 7, 2023
We model the level of a time series which we've observed having step discontinuities via a Markov process for forecasting. Specifically, we estimate the historical step size distribution and the distribution of the steps in time and as a function of the time series value. For this second part we use an online naive Bayes model to estimate the probability that at any given point in a roll out for forecasting we will get a step. This approach generally works well unless we're in the tails of the distribution values we've observed for the time series historically when we roll out. In this case, our prediction probability are very sensitive to the tail behaviour of the distributions we fit to the time series values where we saw a step and sometimes we predict far too many steps as a result. We can detect this case: when we're in the tails of time series value distribution. This change does this and stops predicting changes in such cases, which avoids pathologies. This fixes #2466.
droberts195
pushed a commit
to droberts195/ml-cpp
that referenced
this pull request
Dec 12, 2023
) (elastic#2593) We model the level of a time series which we've observed having step discontinuities via a Markov process for forecasting. Specifically, we estimate the historical step size distribution and the distribution of the steps in time and as a function of the time series value. For this second part we use an online naive Bayes model to estimate the probability that at any given point in a roll out for forecasting we will get a step. This approach generally works well unless we're in the tails of the distribution values we've observed for the time series historically when we roll out. In this case, our prediction probability are very sensitive to the tail behaviour of the distributions we fit to the time series values where we saw a step and sometimes we predict far too many steps as a result. We can detect this case: when we're in the tails of time series value distribution. This change does this and stops predicting changes in such cases, which avoids pathologies.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
We model the level of a time series which we've observed having step discontinuities via a Markov process for forecasting. Specifically, we estimate the historical step size distribution and the distribution of the steps in time and as a function of the time series value. For this second part we use an online naive Bayes model to estimate the probability that at any given point in a roll out for forecasting we will get a step.
This approach generally works well unless we're in the tails of the distribution values we've observed for the time series historically when we roll out. In this case, our prediction probability are very sensitive to the tail behaviour of the distributions we fit to the time series values where we saw a step and sometimes we predict far too many steps as a result. We can detect this case: when we're in the tails of time series value distribution.
This change does this and stops predicting changes in such cases, which avoids pathologies. This fixes #2466.