-
Notifications
You must be signed in to change notification settings - Fork 107
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
330 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,285 @@ | ||
defmodule Axon.Quantization do | ||
alias Axon.Quantization.Layers | ||
|
||
## Transformation | ||
|
||
def quantize(%Axon{} = model, %Axon.ModelState{} = model_state) do | ||
quantized_model = rewrite_dense(model) | ||
quantized_model_state = quantize_dense_layers(model, model_state) | ||
{quantized_model, quantized_model_state} | ||
end | ||
|
||
defp rewrite_dense(%Axon{} = model) do | ||
# TODO: Make this easier | ||
Axon.map_nodes(model, fn | ||
%{op_name: :dense, args: args, parameters: parameters} = axon_node -> | ||
scales = Axon.param("scales", &quantized_dense_scale/1, initializer: :zeros, kind: :state) | ||
|
||
%{ | ||
axon_node | ||
| op_name: :weight_only_quantized_dense, | ||
op: &Layers.weight_only_quantized_dense/5, | ||
args: args ++ [:parameter], | ||
parameters: parameters ++ [scales] | ||
} | ||
|
||
axon_node -> | ||
axon_node | ||
end) | ||
end | ||
|
||
defp quantize_dense_layers(model, model_state) do | ||
# TODO: Make these updates easier | ||
dense_layer_names = | ||
model | ||
|> Axon.properties() | ||
|> Enum.filter(fn {_, v} -> v == :dense end) | ||
|> Enum.map(fn {k, _} -> k end) | ||
|
||
Enum.reduce(dense_layer_names, model_state, fn layer_name, state -> | ||
state | ||
|> update_in([Access.key!(:data), layer_name], fn params -> | ||
quantize_dense_params(params) | ||
end) | ||
|> update_in([Access.key!(:state), layer_name], fn _ -> | ||
["scales"] | ||
end) | ||
end) | ||
end | ||
|
||
defp quantize_dense_params(%{"kernel" => dense_kernel, "bias" => dense_bias}) do | ||
transposed_kernel = Nx.transpose(dense_kernel) | ||
|
||
{quant_kernel, scales, _zero} = | ||
dynamically_quantize_per_channel(transposed_kernel, -128, 127, {:s, 8}) | ||
|
||
%{ | ||
"kernel" => Nx.transpose(quant_kernel), | ||
"bias" => dense_bias, | ||
"scales" => scales | ||
} | ||
end | ||
|
||
## Quantizers | ||
|
||
def dynamically_quantize_per_channel(%Nx.Tensor{} = x, quant_min, quant_max, target_dtype) do | ||
unless Nx.rank(x) == 2, do: raise("expected 2d tensor") | ||
|
||
eps = Nx.Constants.epsilon(:f32) | ||
block_size = {1, Nx.axis_size(x, 1)} | ||
zero_point_dtype = {:s, 64} | ||
|
||
{scale, zero_point} = | ||
choose_quantization_params_affine(x, :symmetric, block_size, target_dtype, | ||
quant_min: quant_min, | ||
quant_max: quant_max, | ||
eps: eps, | ||
zero_point_dtype: zero_point_dtype | ||
) | ||
|
||
quant = quantize_affine(x, block_size, scale, zero_point, target_dtype, quant_min, quant_max) | ||
|
||
{quant, scale, zero_point} | ||
end | ||
|
||
def quantize_affine( | ||
input, | ||
block_size, | ||
scale, | ||
zero_point, | ||
target_dtype, | ||
quant_min, | ||
quant_max, | ||
opts \\ [] | ||
) do | ||
opts = Keyword.validate!(opts, zero_point_domain: :int) | ||
zero_point_domain = opts[:zero_point_domain] | ||
|
||
{shape_for_reduction, reduction_dims} = get_reduction_params(block_size, Nx.shape(input)) | ||
|
||
original_shape = Nx.shape(input) | ||
input = Nx.reshape(input, shape_for_reduction) | ||
|
||
scale_shape = | ||
Enum.reduce(reduction_dims, shape_for_reduction, fn i, shape -> | ||
put_elem(shape, i, 1) | ||
end) | ||
|
||
scale = Nx.reshape(scale, scale_shape) | ||
zero_point = Nx.reshape(zero_point, scale_shape) | ||
|
||
quant = | ||
case zero_point_domain do | ||
:int -> | ||
Nx.clip( | ||
Nx.add(Nx.round(Nx.multiply(input, Nx.divide(1, scale))), zero_point), | ||
quant_min, | ||
quant_max | ||
) | ||
|
||
other -> | ||
raise "unsupported zero point domain #{other}" | ||
end | ||
|
||
Nx.as_type(Nx.reshape(quant, original_shape), target_dtype) | ||
end | ||
|
||
def choose_quantization_params_affine( | ||
input, | ||
mapping_type, | ||
block_size, | ||
target_dtype, | ||
opts \\ [] | ||
) do | ||
opts = | ||
Keyword.validate!(opts, [ | ||
:quant_min, | ||
:quant_max, | ||
:eps, | ||
:scale_dtype, | ||
:zero_point_dtype, | ||
:zero_point_domain, | ||
preserve_zero: true | ||
]) | ||
|
||
preserve_zero = opts[:preserve_zero] | ||
|
||
{quant_min, quant_max} = | ||
get_and_check_qmin_qmax(target_dtype, opts[:quant_min], opts[:quant_max]) | ||
|
||
scale_dtype = opts[:scale_dtype] || Nx.type(input) | ||
zero_point_dtype = opts[:zero_point_dtype] || Nx.type(input) | ||
eps = opts[:eps] || Nx.Constants.epsilon(Nx.type(input)) | ||
|
||
{shape_for_reduction, reduction_dims} = get_reduction_params(block_size, Nx.shape(input)) | ||
input = Nx.reshape(input, shape_for_reduction) | ||
|
||
min_val = Nx.reduce_min(input, axes: reduction_dims, keep_axes: false) | ||
max_val = Nx.reduce_max(input, axes: reduction_dims, keep_axes: false) | ||
|
||
{min_val_neg, max_val_pos} = | ||
if preserve_zero do | ||
{Nx.min(min_val, Nx.broadcast(0, min_val)), Nx.max(max_val, Nx.broadcast(0, max_val))} | ||
else | ||
{min_val, max_val} | ||
end | ||
|
||
{scale, zero_point} = | ||
case mapping_type do | ||
:symmetric -> | ||
max_val_pos = Nx.max(Nx.negate(min_val_neg), max_val_pos) | ||
scale = Nx.divide(max_val_pos, Nx.divide(Nx.subtract(quant_max, quant_min), 2)) | ||
zero_point = Nx.broadcast(trunc((quant_max + quant_min + 1) / 2), scale) | ||
{scale, zero_point} | ||
|
||
other -> | ||
raise "unsupported mapping #{other}" | ||
end | ||
|
||
scale = Nx.clip(scale, eps, Nx.reduce_max(scale)) | ||
|
||
{Nx.as_type(scale, scale_dtype), Nx.as_type(zero_point, zero_point_dtype)} | ||
end | ||
|
||
def get_and_check_qmin_qmax(target_dtype, quant_min, quant_max) do | ||
{lower_bound, upper_bound} = | ||
case target_dtype do | ||
{:u, 8} -> {0, 255} | ||
{:s, 8} -> {-128, 127} | ||
{:s, 16} -> {-(2 ** 15), 2 ** 15 - 1} | ||
{:s, 32} -> {-(2 ** 31), 2 ** 31 - 1} | ||
end | ||
|
||
quant_min = | ||
cond do | ||
quant_min == nil -> | ||
lower_bound | ||
|
||
quant_min < lower_bound -> | ||
raise "quant_min out of bounds for target_dtype" | ||
|
||
true -> | ||
quant_min | ||
end | ||
|
||
quant_max = | ||
cond do | ||
quant_max == nil -> | ||
upper_bound | ||
|
||
quant_max > upper_bound -> | ||
raise "quant_max out of bounds for target_dtype" | ||
|
||
true -> | ||
quant_max | ||
end | ||
|
||
{quant_min, quant_max} | ||
end | ||
|
||
def get_reduction_params(block_size, input_size) do | ||
if tuple_size(block_size) != tuple_size(input_size) do | ||
raise "block_size and input_size must have the same length" | ||
end | ||
|
||
{shape_for_reduction, reduction_dims, _} = | ||
block_size | ||
|> Tuple.to_list() | ||
|> Enum.zip(Tuple.to_list(input_size)) | ||
|> Enum.with_index() | ||
|> Enum.reduce({[], [], 0}, fn {{block, input}, i}, {shape, dims, cur_dim} -> | ||
if block != input and block > 1 do | ||
unless rem(input, block) == 0 do | ||
raise "Expecting input size at #{i} dimension: #{input} to be divisible by block_size at #{i} dimension: #{block}" | ||
end | ||
|
||
shape = [block, div(input, block) | shape] | ||
dims = [cur_dim + 1 | dims] | ||
cur_dim = cur_dim + 2 | ||
|
||
{shape, dims, cur_dim} | ||
else | ||
shape = [input | shape] | ||
dims = if block != 1, do: [cur_dim | dims], else: dims | ||
cur_dim = cur_dim + 1 | ||
|
||
{shape, dims, cur_dim} | ||
end | ||
end) | ||
|
||
{List.to_tuple(Enum.reverse(shape_for_reduction)), Enum.reverse(reduction_dims)} | ||
end | ||
|
||
## Layers | ||
|
||
def weight_only_quantized_dense(input, units, opts \\ []) do | ||
opts = | ||
Keyword.validate!(opts, [ | ||
:name, | ||
:meta, | ||
kernel_initializer: :glorot_uniform, | ||
bias_initializer: :zeros | ||
]) | ||
|
||
kernel_shape = &Axon.Shape.dense_kernel(&1, units) | ||
bias_shape = &Axon.Shape.dense_bias(&1, units) | ||
scales_shape = &quantized_dense_scale/1 | ||
|
||
kernel = Axon.param("kernel", kernel_shape, initializer: opts[:kernel_initializer]) | ||
bias = Axon.param("bias", bias_shape, initializer: opts[:bias_initializer]) | ||
# TODO: This requires dependent initializers | ||
scales = Axon.param("scales", scales_shape, initializer: :zeros) | ||
|
||
Axon.layer(&Layers.weight_only_quantized_dense/5, [input, kernel, bias, scales], | ||
meta: opts[:meta], | ||
name: opts[:name], | ||
op_name: :weight_only_quantized_dense | ||
) | ||
end | ||
|
||
defp quantized_dense_scale(input_shape) do | ||
Nx.axis_size(input_shape, -1) | ||
end | ||
|
||
## Quantizers | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
defmodule Axon.Quantization.Layers do | ||
@moduledoc """ | ||
Quantized Layer Implementations. | ||
""" | ||
|
||
import Nx.Defn | ||
|
||
# TODO: Make this more general | ||
|
||
defn weight_only_quantized_dense(x, kernel, bias, scales, _opts \\ []) do | ||
# TODO: Flatten x if necessary | ||
|
||
x | ||
|> Nx.dot(Nx.as_type(kernel, Nx.type(x))) | ||
|> Nx.multiply(scales) | ||
|> Nx.add(bias) | ||
end | ||
end |