Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add option to control anti-aliasing in the resize layer #555

Merged
merged 1 commit into from
Feb 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions lib/axon.ex
Original file line number Diff line number Diff line change
Expand Up @@ -390,7 +390,7 @@ defmodule Axon do

You may specify the parameter shape as either a static shape or
as function of the inputs to the given layer. If you specify the
parameter shape as a function, it will be given the
parameter shape as a function, it will be given the

## Options

Expand Down Expand Up @@ -2122,18 +2122,22 @@ defmodule Axon do

* `:method` - resize method. Defaults to `:nearest`.

* `:antialias` - whether an anti-aliasing filter should be used
when downsampling. Defaults to `true`.

* `:channels` - channel configuration. One of `:first` or
`:last`. Defaults to `:last`.

"""
@doc type: :shape
def resize(%Axon{} = x, resize_shape, opts \\ []) do
opts = Keyword.validate!(opts, [:name, method: :nearest, channels: :last])
opts = Keyword.validate!(opts, [:name, method: :nearest, antialias: true, channels: :last])
channels = opts[:channels]

layer(:resize, [x],
name: opts[:name],
method: opts[:method],
antialias: opts[:antialias],
channels: channels,
size: resize_shape,
op_name: :resize
Expand Down
52 changes: 44 additions & 8 deletions lib/axon/layers.ex
Original file line number Diff line number Diff line change
Expand Up @@ -1915,8 +1915,21 @@ defmodule Axon.Layers do
must be at least rank 3, with fixed `batch` and `channel` dimensions.
Resizing will upsample or downsample using the given resize method.

Supported resize methods are `:nearest, :linear, :bilinear, :trilinear,
:cubic, :bicubic, :tricubic`.
## Options

* `:size` - a tuple specifying the resized spatial dimensions.
Required.

* `:method` - the resizing method to use, either of `:nearest`,
`:bilinear`, `:bicubic`, `:lanczos3`, `:lanczos5`. Defaults to
`:nearest`.

* `:antialias` - whether an anti-aliasing filter should be used
when downsampling. This has no effect with upsampling. Defaults
to `true`.

* `:channels` - channels location, either `:first` or `:last`.
Defaults to `:last`.

## Examples

Expand Down Expand Up @@ -1951,6 +1964,7 @@ defmodule Axon.Layers do
:size,
method: :nearest,
channels: :last,
antialias: true,
mode: :inference
])

Expand All @@ -1962,22 +1976,36 @@ defmodule Axon.Layers do
{axis, put_elem(out_shape, axis, out_size)}
end)

antialias = opts[:antialias]

resized_input =
case opts[:method] do
:nearest ->
resize_nearest(input, out_shape, spatial_axes)

:bilinear ->
resize_with_kernel(input, out_shape, spatial_axes, &fill_linear_kernel/1)
resize_with_kernel(input, out_shape, spatial_axes, antialias, &fill_linear_kernel/1)

:bicubic ->
resize_with_kernel(input, out_shape, spatial_axes, &fill_cubic_kernel/1)
resize_with_kernel(input, out_shape, spatial_axes, antialias, &fill_cubic_kernel/1)

:lanczos3 ->
resize_with_kernel(input, out_shape, spatial_axes, &fill_lanczos_kernel(3, &1))
resize_with_kernel(
input,
out_shape,
spatial_axes,
antialias,
&fill_lanczos_kernel(3, &1)
)

:lanczos5 ->
resize_with_kernel(input, out_shape, spatial_axes, &fill_lanczos_kernel(5, &1))
resize_with_kernel(
input,
out_shape,
spatial_axes,
antialias,
&fill_lanczos_kernel(5, &1)
)

method ->
raise ArgumentError,
Expand Down Expand Up @@ -2038,12 +2066,13 @@ defmodule Axon.Layers do

@f32_eps :math.pow(2, -23)

deftransformp resize_with_kernel(input, out_shape, spatial_axes, kernel_fun) do
deftransformp resize_with_kernel(input, out_shape, spatial_axes, antialias, kernel_fun) do
for axis <- spatial_axes, reduce: input do
input ->
resize_axis_with_kernel(input,
axis: axis,
output_size: elem(out_shape, axis),
antialias: antialias,
kernel_fun: kernel_fun
)
end
Expand All @@ -2052,12 +2081,19 @@ defmodule Axon.Layers do
defnp resize_axis_with_kernel(input, opts) do
axis = opts[:axis]
output_size = opts[:output_size]
antialias = opts[:antialias]
kernel_fun = opts[:kernel_fun]

input_size = Nx.axis_size(input, axis)

inv_scale = input_size / output_size
kernel_scale = max(1, inv_scale)

kernel_scale =
if antialias do
max(1, inv_scale)
else
1
end

sample_f = (Nx.iota({1, output_size}) + 0.5) * inv_scale - 0.5
x = Nx.abs(sample_f - Nx.iota({input_size, 1})) / kernel_scale
Expand Down
40 changes: 40 additions & 0 deletions test/axon/layers_test.exs
Original file line number Diff line number Diff line change
Expand Up @@ -1009,6 +1009,46 @@ defmodule Axon.LayersTest do
atol: 1.0e-4
)
end

test "without anti-aliasing" do
# Upscaling

image = Nx.iota({1, 4, 4, 3}, type: :f32)

assert_all_close(
Axon.Layers.resize(image, size: {3, 3}, method: :bicubic, antialias: false),
Nx.tensor([
[
[
[[1.5427, 2.5427, 3.5427], [5.7341, 6.7341, 7.7341], [9.9256, 10.9256, 11.9256]],
[[18.3085, 19.3085, 20.3085], [22.5, 23.5, 24.5], [26.6915, 27.6915, 28.6915]],
[
[35.0744, 36.0744, 37.0744],
[39.2659, 40.2659, 41.2659],
[43.4573, 44.4573, 45.4573]
]
]
]
]),
atol: 1.0e-4
)

# Downscaling (no effect)

image = Nx.iota({1, 2, 2, 3}, type: :f32)

assert_all_close(
Axon.Layers.resize(image, size: {3, 3}, method: :bicubic, antialias: false),
Nx.tensor([
[
[[-0.5921, 0.4079, 1.4079], [1.1053, 2.1053, 3.1053], [2.8026, 3.8026, 4.8026]],
[[2.8026, 3.8026, 4.8026], [4.5, 5.5, 6.5], [6.1974, 7.1974, 8.1974]],
[[6.1974, 7.1974, 8.1974], [7.8947, 8.8947, 9.8947], [9.5921, 10.5921, 11.5921]]
]
]),
atol: 1.0e-4
)
end
end

describe "lstm_cell" do
Expand Down
Loading