-
Notifications
You must be signed in to change notification settings - Fork 107
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add BLIP and text-to-image serving (#181)
- Loading branch information
1 parent
135141e
commit 48c26db
Showing
21 changed files
with
1,464 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
defmodule Bumblebee.Multimodal.Blip do | ||
alias Bumblebee.Shared | ||
|
||
options = | ||
[ | ||
text_spec: [ | ||
default: nil, | ||
doc: "the specification of the text model. See `Bumblebee.Text.BlipText` for details" | ||
], | ||
vision_spec: [ | ||
default: nil, | ||
doc: | ||
"the specification of the vision model. See `Bumblebee.Vision.BlipVision` for details" | ||
], | ||
projection_size: [ | ||
default: 512, | ||
doc: "the dimensionality of text and vision projection layers" | ||
], | ||
logit_scale_initial_value: [ | ||
default: 2.6592, | ||
doc: "the initial value for the scaling layer used to scale similarity logits" | ||
] | ||
] ++ | ||
Shared.token_options( | ||
pad_token_id: 0, | ||
bos_token_id: 30522, | ||
# During generation SEP token is used as the EOS token | ||
eos_token_id: 102, | ||
sep_token_id: 102 | ||
) | ||
|
||
@moduledoc """ | ||
The BLIP model for text-image similarity. | ||
## Architectures | ||
* `:for_conditional_generation` - BLIP model with a language | ||
modeling head | ||
## Inputs | ||
* `"pixel_values"` - `{batch_size, image_size, image_size, num_channels}` | ||
Featurized image pixel values. | ||
* `"decoder_input_ids"` - `{batch_size, target_sequence_length}` | ||
Indices of decoder input sequence tokens in the vocabulary. If not | ||
present and `"input_ids"` is, it will be generated by shifting | ||
each token in `"input_ids"` to the right once. | ||
* `"decoder_attention_mask"` - `{batch_size, target_sequence_length}` | ||
Mask indicating which decoder tokens to attend to. This is used | ||
to ignore padding tokens, which are added when processing a batch | ||
of sequences with different length. | ||
* `"decoder_position_ids"` - `{batch_size, target_sequence_length}` | ||
Indices of positions of each decoder input sequence tokens in | ||
the position embeddings. | ||
* `"cache"` | ||
A container with cached layer results used to speed up sequential | ||
decoding (autoregression). With cache, certain hidden states are | ||
taken from the cache, rather than recomputed on every decoding | ||
pass. The cache should be treated as opaque and initialized with | ||
`Bumblebee.Text.Generation.init_cache/4`. | ||
## Configuration | ||
#{Shared.options_doc(options)} | ||
## References | ||
* [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) | ||
""" | ||
|
||
defstruct [architecture: :for_conditional_generation] ++ Shared.option_defaults(options) | ||
|
||
@behaviour Bumblebee.ModelSpec | ||
@behaviour Bumblebee.Configurable | ||
@behaviour Bumblebee.Text.Generation | ||
|
||
alias Bumblebee.Layers | ||
|
||
@impl true | ||
def architectures(), do: [:for_conditional_generation] | ||
|
||
@impl true | ||
def config(spec, opts \\ []) do | ||
Shared.put_config_attrs(spec, opts) | ||
end | ||
|
||
@impl true | ||
def input_template(%{vision_spec: vision_spec}) do | ||
vision_shape = {1, vision_spec.image_size, vision_spec.image_size, vision_spec.num_channels} | ||
|
||
%{ | ||
"pixel_values" => Nx.template(vision_shape, :f32), | ||
"decoder_input_ids" => Nx.template({1, 1}, :s64) | ||
} | ||
end | ||
|
||
@impl true | ||
def model(%__MODULE__{architecture: :for_conditional_generation} = spec) do | ||
%{vision_spec: vision_spec, text_spec: text_spec} = spec | ||
|
||
vision_shape = {nil, vision_spec.image_size, vision_spec.image_size, vision_spec.num_channels} | ||
text_shape = {nil, nil} | ||
|
||
inputs = | ||
Bumblebee.Utils.Model.inputs_to_map([ | ||
Axon.input("pixel_values", shape: vision_shape), | ||
Axon.input("decoder_input_ids", optional: true, shape: text_shape), | ||
Axon.input("decoder_attention_mask", optional: true, shape: text_shape), | ||
Axon.input("decoder_position_ids", optional: true, shape: text_shape), | ||
Axon.input("cache", optional: true) | ||
]) | ||
|
||
vision_model = | ||
vision_spec | ||
|> Bumblebee.build_model() | ||
|> Bumblebee.Utils.Axon.prefix_names("vision_model.") | ||
|> Bumblebee.Utils.Axon.plug_inputs(%{ | ||
"pixel_values" => inputs["pixel_values"] | ||
}) | ||
|
||
text_decoder = | ||
text_spec | ||
|> Bumblebee.build_model() | ||
|> Bumblebee.Utils.Axon.prefix_names("text_decoder.") | ||
|> Bumblebee.Utils.Axon.plug_inputs(%{ | ||
"input_ids" => inputs["decoder_input_ids"], | ||
"attention_mask" => inputs["decoder_attention_mask"], | ||
"position_ids" => inputs["decoder_position_ids"], | ||
"encoder_hidden_state" => Axon.nx(vision_model, & &1.hidden_state), | ||
"cache" => inputs["cache"] | ||
}) | ||
|
||
Layers.output(%{ | ||
logits: Axon.nx(text_decoder, & &1.logits), | ||
decoder_hidden_states: Axon.nx(text_decoder, & &1.hidden_states), | ||
decoder_attentions: Axon.nx(text_decoder, & &1.attentions), | ||
cross_attentions: Axon.nx(text_decoder, & &1.cross_attentions), | ||
encoder_hidden_state: Axon.nx(vision_model, & &1.hidden_state), | ||
encoder_hidden_states: Axon.nx(vision_model, & &1.hidden_states), | ||
encoder_attentions: Axon.nx(vision_model, & &1.attentions), | ||
cache: Axon.nx(text_decoder, & &1.cache) | ||
}) | ||
end | ||
|
||
@impl true | ||
def init_cache( | ||
%{vision_spec: vision_spec, text_spec: text_spec}, | ||
batch_size, | ||
max_length, | ||
inputs | ||
) do | ||
num_patches = div(vision_spec.image_size, vision_spec.patch_size) ** 2 | ||
encoder_sequence_length = num_patches + 1 | ||
encoder_shape = {batch_size, encoder_sequence_length, text_spec.hidden_size} | ||
|
||
inputs = | ||
%{ | ||
"input_ids" => inputs["decoder_input_ids"], | ||
"attention_mask" => inputs["decoder_attention_mask"], | ||
"position_ids" => inputs["decoder_position_ids"], | ||
"encoder_hidden_state" => Nx.template(encoder_shape, :f32) | ||
} | ||
|> Map.reject(&match?({_, nil}, &1)) | ||
|
||
text_spec.__struct__.init_cache(text_spec, batch_size, max_length, inputs) | ||
end | ||
|
||
defimpl Bumblebee.HuggingFace.Transformers.Config do | ||
def load(spec, data) do | ||
import Shared.Converters | ||
|
||
{text_data, data} = Map.pop(data, "text_config", %{}) | ||
{vision_data, data} = Map.pop(data, "vision_config", %{}) | ||
|
||
text_spec = | ||
Bumblebee.Text.BlipText | ||
|> Bumblebee.configure(architecture: :for_causal_language_modeling) | ||
|> Bumblebee.HuggingFace.Transformers.Config.load(text_data) | ||
|
||
vision_spec = | ||
Bumblebee.Vision.BlipVision | ||
|> Bumblebee.configure() | ||
|> Bumblebee.HuggingFace.Transformers.Config.load(vision_data) | ||
|
||
opts = | ||
convert!(data, | ||
projection_size: {"projection_dim", number()}, | ||
logit_scale_initial_value: {"logit_scale_init_value", number()} | ||
) ++ Shared.common_options_from_transformers(data, spec) | ||
|
||
opts = | ||
case Keyword.fetch(opts, :sep_token_id) do | ||
{:ok, sep_token_id} -> Keyword.put(opts, :eos_token_id, sep_token_id) | ||
:error -> opts | ||
end | ||
|
||
@for.config(spec, opts ++ [text_spec: text_spec, vision_spec: vision_spec]) | ||
end | ||
end | ||
|
||
defimpl Bumblebee.HuggingFace.Transformers.Model do | ||
alias Bumblebee.HuggingFace.Transformers | ||
|
||
def params_mapping(spec) do | ||
text_mapping = | ||
spec.text_spec | ||
|> Transformers.Model.params_mapping() | ||
|> Transformers.Utils.prefix_params_mapping("text_decoder", nil) | ||
|
||
vision_mapping = | ||
spec.vision_spec | ||
|> Transformers.Model.params_mapping() | ||
|> Transformers.Utils.prefix_params_mapping("vision_model", nil) | ||
|
||
%{ | ||
"text_projection" => "text_projection", | ||
"visual_projection" => "visual_projection", | ||
"scale" => %{ | ||
"scale" => {[{"scale", "logit_scale"}], fn [scale] -> scale end} | ||
} | ||
} | ||
|> Map.merge(text_mapping) | ||
|> Map.merge(vision_mapping) | ||
end | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.