Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add text embedding serving #214

Merged
merged 17 commits into from
Jun 2, 2023
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions lib/bumblebee/text.ex
Original file line number Diff line number Diff line change
Expand Up @@ -305,6 +305,68 @@ defmodule Bumblebee.Text do
defdelegate text_classification(model_info, tokenizer, opts \\ []),
to: Bumblebee.Text.TextClassification

@type text_embedding_input :: String.t()
@type text_embedding_output :: %{embedding: Nx.Tensor.t()}

@doc """
Builds serving for text embeddings.

The serving accepts `t:text_embedding_input/0` and returns
`t:text_embedding_output/0`. A list of inputs is also supported.

## Options

* `:output_attribute` - the attribute of the embedding model output
with the desired embedding. Set this option to `nil` in order to
directly retrieve the model output rather than choosing an attribute
of it. Defaults to `:pooled_state`

* `embedding_functions` - a list of the functions to apply to the
output embedding, in order. Each element of the list should be
one of `:l2_normalization` or `:mean_pooling`. Defaults to `[]`

* `:compile` - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:

* `:batch_size` - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

* `:sequence_length` - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using `:defn_options` to maximally reduce inference
time.

* `:defn_options` - the options for JIT compilation. Defaults to `[]`

## Examples

{:ok, model_info} = Bumblebee.load_model({:hf, "intfloat/e5-large"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "intfloat/e5-large"})

serving = Bumblebee.Text.TextEmbedding.text_embedding(model_info, tokenizer)

text = "query: Cats are cute."
Nx.Serving.run(serving, text)

#=> %{
#=> embedding: #Nx.Tensor<
#=> f32[1024]
#=> EXLA.Backend<host:0, 0.124908262.1234305056.185360>
#=> [-0.9789889454841614, -0.9814645051956177, -0.5015208125114441, 0.9867952466011047, 0.9917466640472412, -0.5557178258895874, -0.18618212640285492, 0.797040581703186, 0.8922086954116821, 0.7599573135375977, -0.16524426639080048, -0.8740050792694092, 0.9433475732803345, 0.7217797636985779, 0.9437620639801025, 0.4694959223270416, 0.40594056248664856, -0.20143413543701172, 0.7144518494606018, -0.8689796924591064, 0.94001305103302, 0.17163503170013428, -0.9896315932273865, 0.4455447494983673, 0.41139301657676697, 0.01911175064742565, -0.11275406181812286, -0.734498143196106, -0.6410953402519226, -0.628239095211029, -0.2570168673992157, 0.475137323141098, -0.7534396052360535, -0.9492156505584717, -0.17271563410758972, 0.9081271886825562, -0.4851466119289398, -0.9440935254096985, -0.20976334810256958, -0.684502899646759, -0.11581139266490936, 0.17509342730045319, 0.05547652021050453, 0.31042391061782837, 0.955132007598877, -0.35595986247062683, 0.016105204820632935, -0.3154579997062683, 0.9630348682403564, ...]
#=> >
#=> }
"""
@spec text_embedding(
Bumblebee.model_info(),
Bumblebee.Tokenizer.t(),
keyword()
) :: Nx.Serving.t()
defdelegate text_embedding(model_info, tokenizer, opts \\ []),
to: Bumblebee.Text.TextEmbedding

@type fill_mask_input :: String.t()
@type fill_mask_output :: %{predictions: list(fill_mask_prediction())}
@type fill_mask_prediction :: %{score: number(), token: String.t()}
Expand Down
107 changes: 107 additions & 0 deletions lib/bumblebee/text/text_embedding.ex
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
defmodule Bumblebee.Text.TextEmbedding do
@moduledoc false

alias Bumblebee.Shared

def text_embedding(model_info, tokenizer, opts \\ []) do
%{model: model, params: params, spec: _spec} = model_info

opts =
Keyword.validate!(opts, [
:compile,
output_attribute: :pooled_state,
embedding_functions: [],
defn_options: []
])

output_attribute = opts[:output_attribute]
embedding_functions = opts[:embedding_functions]
compile = opts[:compile]
defn_options = opts[:defn_options]

batch_size = compile[:batch_size]
sequence_length = compile[:sequence_length]

if compile != nil and (batch_size == nil or sequence_length == nil) do
raise ArgumentError,
"expected :compile to be a keyword list specifying :batch_size and :sequence_length, got: #{inspect(compile)}"
end

{_init_fun, encoder} = Axon.build(model)

embedding_fun = fn params, inputs ->
if output_attribute == nil do
{inputs, encoder.(params, inputs)}
else
{inputs, encoder.(params, inputs)[output_attribute]}
end
end

Nx.Serving.new(
fn defn_options ->
embedding_fun =
Shared.compile_or_jit(embedding_fun, defn_options, compile != nil, fn ->
inputs = %{
"input_ids" => Nx.template({batch_size, sequence_length}, :u32),
"attention_mask" => Nx.template({batch_size, sequence_length}, :u32)
}

[params, inputs]
end)

fn inputs ->
inputs = Shared.maybe_pad(inputs, batch_size)
embedding_fun.(params, inputs)
end
end,
defn_options
)
|> Nx.Serving.process_options(batch_size: batch_size)
|> Nx.Serving.client_preprocessing(fn input ->
{texts, multi?} = Shared.validate_serving_input!(input, &Shared.validate_string/1)

inputs =
Bumblebee.apply_tokenizer(tokenizer, texts,
length: sequence_length,
return_token_type_ids: false
)

{Nx.Batch.concatenate([inputs]), multi?}
end)
|> Nx.Serving.client_postprocessing(fn inputs_and_embeddings, _metadata, multi? ->
for inputs_and_embedding <- Bumblebee.Utils.Nx.batch_to_list(inputs_and_embeddings) do
{inputs, embedding} = inputs_and_embedding

transformed_embedding =
Enum.reduce(embedding_functions, embedding, fn embedding_function, acc_embedding ->
case embedding_function do
:l2_normalization ->
norm = Nx.LinAlg.norm(acc_embedding, ord: 2)

if norm > 0 do
Nx.divide(acc_embedding, norm)
else
# If the norm is 0, we return the original embedding (the zero vector)
acc_embedding
end

:mean_pooling ->
input_mask_expanded = Nx.new_axis(inputs["attention_mask"], -1)

acc_embedding
|> Nx.multiply(input_mask_expanded)
|> Nx.sum(axes: [1])
|> Nx.divide(Nx.sum(input_mask_expanded, axes: [1]))

other ->
raise ArgumentError,
"expected each element of :embedding_functions to be one of :l2_normalization or :mean_pooling, got: #{inspect(other)}"
end
end)

%{embedding: transformed_embedding}
end
|> Shared.normalize_output(multi?)
end)
end
end
22 changes: 22 additions & 0 deletions test/bumblebee/text/text_embedding_test.exs
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
defmodule Bumblebee.Text.TextEmbeddingTest do
use ExUnit.Case, async: false

import Bumblebee.TestHelpers

@moduletag model_test_tags()

describe "integration" do
test "returns E5 embedding for a piece of text" do
{:ok, model_info} = Bumblebee.load_model({:hf, "intfloat/e5-large"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "intfloat/e5-large"})

options = [embedding_functions: [:l2_normalization]]

serving = Bumblebee.Text.TextEmbedding.text_embedding(model_info, tokenizer, options)

text = "query: Cats are cute."

assert Nx.shape(Nx.Serving.run(serving, text).embedding) == {1024}
end
end
end