Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.
>>> n = 5
>>> arr = np.random.uniform(high=6, size=(n, n))
>>> for _ in range(3):
>>> arr[np.random.randint(n), np.random.randint(n)] = np.nan
>>> print(arr)
array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, np.nan],
[4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805],
[0.79802036, np.nan, 0.51729349, 5.06533123, 3.70669172],
[1.30848217, 2.08386584, 2.29894541, np.nan, 3.38661392],
[2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]])
>>> import impyute as impy
>>> print(impy.mean(arr))
array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, 3.7122365],
[4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805],
[0.79802036, 1.99128649, 0.51729349, 5.06533123, 3.70669172],
[1.30848217, 2.08386584, 2.29894541, 3.08994336, 3.38661392],
[2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]])
- Imputation of Cross Sectional Data
- K-Nearest Neighbours
- Multivariate Imputation by Chained Equations
- Expectation Maximization
- Mean Imputation
- Mode Imputation
- Median Imputation
- Random Imputation
- Imputation of Time Series Data
- Last Observation Carried Forward
- Moving Window
- Autoregressive Integrated Moving Average (WIP)
- Diagnostic Tools
- Loggers
- Distribution of Null Values
- Comparison of imputations
- Little's MCAR Test (WIP)
Currently tested on 2.7, 3.4, 3.5, 3.6 and 3.7
To install impyute, run the following:
$ pip install impyute
Or to get the most current version:
$ git clone https://github.com/eltonlaw/impyute
$ cd impyute
$ python setup.py install
Documentation is available here: http://impyute.readthedocs.io/
Check out CONTRIBUTING