Skip to content

Visualizing lidar data using Uber Autonomous Visualization System (AVS) and Jupyter Notebook Application

License

Notifications You must be signed in to change notification settings

enginBozkurt/Visualizing-lidar-data

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Visualizing lidar data

Visualizing lidar data using Uber Autonomous Visualization System (AVS) and a Jupyter Notebook Application

This project contains two different applications for visualizing lidar data using KITTI Vision Benchmark Suite datasets.

ubPic

1. Uber AVS Autonomous Visualization System (AVS) --- XVIZ (the data layer for AVS)

Quick start

You need Node.js and yarn to run the examples.

# Clone XVIZ
$ git clone https://github.com/uber/xviz.git
$ cd xviz

# Install dependencies
$ yarn bootstrap

Convert and serve KITTI example data:

# Download KITTI data
$ ./scripts/download-kitti-data.sh

# Convert KITTI data if necessary and run the XVIZ Server and Client
$ ./scripts/run-kitti-example.sh

2. KITTI Dataset Exploration

Dependencies

Apart from the common dependencies like numpy and matplotlib notebook requires pykitti. You can install pykitti via pip using:

pip install pykitti

Project structure

File Description
kitti-dataset.ipynb Jupyter Notebook with dataset visualisation routines and output.
parseTrackletXML.py Methods for parsing tracklets (e.g. dataset labels), originally created by Christian Herdtweck.
utilities.py Convenient logging routines.

I have used one of the raw datasets available on KITTI website.

2011_09_26_drive_0005 (0.6 GB)

Length: 160 frames (00:16 minutes)

Image resolution: 1392 x 512 pixels

Labels: 9 Cars, 3 Vans, 0 Trucks, 2 Pedestrians, 0 Sitters, 1 Cyclists, 0 Trams, 0 Misc

notebook1

5ce4618251634176609181

References:

Releases

No releases published

Packages

No packages published