generated from entelecheia/hyperfast-python-template
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(datasets/utils): add DSUtils class with static utility methods
- Loading branch information
1 parent
407b73a
commit c3271e1
Showing
1 changed file
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
from typing import Any, Dict, List, Mapping, Optional, Sequence, Union | ||
|
||
import pandas as pd | ||
from datasets.arrow_dataset import Dataset | ||
from datasets.iterable_dataset import IterableDataset | ||
|
||
from hyfi.utils.iolibs import IOLIBs | ||
from hyfi.utils.logging import LOGGING | ||
|
||
logger = LOGGING.getLogger(__name__) | ||
|
||
|
||
class DSUtils: | ||
def __init__(self): | ||
pass | ||
|
||
@staticmethod | ||
def is_dataframe(data: Any) -> bool: | ||
"""Check if data is a pandas dataframe""" | ||
return isinstance(data, pd.DataFrame) | ||
|
||
@staticmethod | ||
def is_dataset(data: Any) -> bool: | ||
"""Check if data is a HuggingFace dataset""" | ||
return isinstance(data, Dataset or IterableDataset) | ||
|
||
@staticmethod | ||
def get_data_files( | ||
data_files: Optional[ | ||
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]] | ||
] = None, | ||
data_dir: Optional[str] = None, | ||
split: Optional[str] = None, | ||
recursive: bool = True, | ||
use_cached: bool = False, | ||
verbose: bool = False, | ||
**kwargs, | ||
) -> Union[List[str], Dict[str, List[str]]]: | ||
if isinstance(data_files, dict): | ||
return { | ||
name: IOLIBs.get_filepaths( | ||
files, | ||
data_dir, | ||
recursive=recursive, | ||
use_cached=use_cached, | ||
verbose=verbose, | ||
**kwargs, | ||
) | ||
for name, files in data_files.items() | ||
} | ||
filepaths = IOLIBs.get_filepaths( | ||
data_files, | ||
data_dir, | ||
recursive=recursive, | ||
use_cached=use_cached, | ||
verbose=verbose, | ||
**kwargs, | ||
) | ||
return {split: filepaths} if split else filepaths | ||
|
||
@staticmethod | ||
def to_datetime( | ||
data, | ||
_format: Optional[str] = None, | ||
_columns: Optional[Union[str, Sequence[str]]] = None, | ||
**kwargs, | ||
): | ||
"""Convert a string, int, or datetime object to a datetime object""" | ||
from datetime import datetime | ||
|
||
import pandas as pd | ||
|
||
if isinstance(data, datetime): | ||
return data | ||
elif isinstance(data, str): | ||
if _format is None: | ||
_format = "%Y-%m-%d" | ||
return datetime.strptime(data, _format) | ||
elif isinstance(data, int): | ||
return datetime.fromtimestamp(data) | ||
elif isinstance(data, pd.DataFrame): | ||
if _columns: | ||
if isinstance(_columns, str): | ||
_columns = [_columns] | ||
for _col in _columns: | ||
data[_col] = pd.to_datetime(data[_col], format=_format, **kwargs) | ||
return data | ||
else: | ||
return data | ||
|
||
@staticmethod | ||
def to_numeric( | ||
data, | ||
_columns: Optional[Union[str, Sequence[str]]] = None, | ||
errors: Optional[str] = "coerce", | ||
downcast: Optional[str] = None, | ||
**kwargs, | ||
): | ||
"""Convert a string, int, or float object to a float object""" | ||
import pandas as pd | ||
|
||
if isinstance(data, str): | ||
return float(data) | ||
elif isinstance(data, (int, float)) or not isinstance(data, pd.DataFrame): | ||
return data | ||
else: | ||
if _columns: | ||
if isinstance(_columns, str): | ||
_columns = [_columns] | ||
for _col in _columns: | ||
data[_col] = pd.to_numeric(data[_col], errors=errors, downcast=downcast) # type: ignore | ||
return data | ||
|
||
@staticmethod | ||
def dict_to_dataframe( | ||
data: Dict[Any, Any], | ||
orient: str = "columns", | ||
dtype=None, | ||
columns=None, | ||
) -> pd.DataFrame: | ||
"""Convert a dictionary to a pandas dataframe""" | ||
import pandas as pd | ||
|
||
return pd.DataFrame.from_dict(data, orient=orient, dtype=dtype, columns=columns) # type: ignore | ||
|
||
@staticmethod | ||
def records_to_dataframe( | ||
data, | ||
index=None, | ||
exclude=None, | ||
columns=None, | ||
coerce_float=False, | ||
nrows=None, | ||
) -> pd.DataFrame: | ||
"""Convert a list of records to a pandas dataframe""" | ||
import pandas as pd | ||
|
||
return pd.DataFrame.from_records( | ||
data, | ||
index=index, | ||
exclude=exclude, | ||
columns=columns, | ||
coerce_float=coerce_float, | ||
nrows=nrows, | ||
) |