Skip to content

enter-opy/everest

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Everest

Peaks identification using CNN

Usage

To install everest, download the release and run the following pip command:

pip install everest-0.0.1-py3-none-any.whl

Import the library into your python project to use everest:

from everest import find_peaks

peaks_loc, peaks_mag, probs = find_peaks(X, threshold=0.5)

Parameters

  • X (array-like): Input array representing the signal.
  • threshold (float): Probability threshold for identifying peaks (default=0.5).
  • return_probs (bool): Set this to True to return probs (default=True).

Returns

  • peaks_loc (numpy.array): Locations of the peaks.
  • peaks_mag (numpy.array): Values of the peaks.
  • probs (numpy.array): Probabilities associated with each peak.

Model

graph LR;
    Conv1D1[<b>Conv</b> \n<span style="font-size: smaller;">20 channels</span>] --> MaxPool[MaxPool];
    MaxPool --> Conv1D2[Conv1D\n<span style="font-size: smaller;">40 channels</span>];
    Conv1D2 --> Flatten[Flatten];
    Flatten --> Dense1[FC \n<span style="font-size: smaller;">20 units</span>];
    Dense1 --> Dense2[FC \n<span style="font-size: smaller;">4 units</span>];
    Dense2 --> Output[$$\sigma$$];

    class Conv1D1,MaxPool,Conv1D2,Flatten,Dense1,Dense2,Output non-interactive;
Loading

Results

Contributing

Contributions to Everest are welcome! If you'd like to contribute, follow these steps:

  1. Fork the Repository: Start by forking the Everest.
  2. Make Changes: Create a new branch , make your changes, and commit them to your branch.
  3. Create a Pull Request: Push your changes to your fork and submit a pull request to the original repository.

License

This project is licensed under the GNU General Public License. See the LICENSE for details.

References