Skip to content

epfml/DenseFormer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DenseFormer

This repository contains a helpful python package to implement DenseFormers as described in the paper: Enhancing Information Flow in Transformers via Depth Weighted Averaging.

Installation

The code is arranged as a denseformer package. To install the denseformer package, run:

pip install -e .

Usage

The following shows how to transform a simplified Transformer class into a DenseFormer in only 3 steps:

import torch
from denseformer import DWAModules 

class DenseFormer(torch.nn.Module):

  def __init__(self, config):
    super().__init__()
    self.config = config
    self.dwa_modules = DWAModules(config.n_blocks, config.dilation, config.dwa_period) # Step 1
    self.wte = torch.nn.Embedding(config.vocab_size, config.n_embd)
    self.blocks = torch.nn.ModuleList([Block(config) for _ in range(config.n_blocks)])
    self.ln_f = LayerNorm(config.n_embd, bias=config.bias)
    self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)
    self.transformer.wte.weight = self.lm_head.weight

  def forward(self, idx):
    x = self.wte(idx) 
    self.dwa_modules.init_accumulators(x) # Step 2
    for i in range(self.config.n_blocks):
      x = self.blocks[i](x)
      x = self.dwa_modules(x, block_idx=i) # Step 3
    x = self.ln_f(x)
    logits = self.lm_head(x)
    return logits

Warning

The module use nn.Linear submodules for the DWA weights. If you force some initialization on all the nn.Linear submodules you might break the DWA initialization. Simply call self.dwa_modules._init_weights() again in that case.