Mask-RCNN Caculates....
Before Image goes into mask rcnn backbone module, image is resized to fixed size to get good features. When resizing image, generally Bilinear interpolation is used. There're many kind of interpolation methods to resize in this repository code.
-
--dt : dataset
- pf : pennFudan
- bln : balloon
-
--model : interpolation method
- bicubic (👍)
- bilinear
- nearest
Usage
python train.py --dt pf --model bicubic -o ./model/something.pth
-
--out : default = './model/new.pth'
-
--epochs : default = 50
-
--batch : default = 4
-
--device : default = 'cuda:0'
-
--workers : default = 4
About performance
- mAP
- mask
- bbox
Jupyter (interactive)
: evaluate.ipynb
Shell
python evaluate.py -m /path/to/modelA.pth /path/to/modelB.pth -o /where/to/save/figure_dir
- -m ,--model (default) ./models/*.pth
- -o ,--output (default) false (false : prints evaluation results on console, true : saves graph images in ./results directory )
e.g )
python evaluate.py
python evaluate.py -m /path/to/modelA.pth /path/to/modelB.pth -o true
python evaluate.py -o true
python evaluate.py -m /path/to/modelA.pth /path/to/modelB.pth
image output : modelName_ap_epochs.jpg , modelName_ap_table.jpg
Adjust bicubic mask rcnn to your image.
Bash Usage
python inference.py -m ./models/pf_4_nearest.pth -i ./input.jpg -o ./output.jpg
- -m ,--model (default) './models/pf_4_bicubic.pth'
- -i ,--input (default) './sample/pds1.jpg'
- -o ,--output (default) './sample/pre_pds1.jpg'
If you have a question , feel free to ask me.