Skip to content
/ proEQUIB Public

proEQUIB - IDL/GDL Library for Plasma Diagnostics and Abundance Analysis

License

Notifications You must be signed in to change notification settings

equib/proEQUIB

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

proEQUIB

Build Status Build Status Binder GitHub license Zenodo JOSS

Description

The proEQUIB library is a collection of Interactive Data Language (IDL)/GNU Data Language (GDL) programs developed to perform plasma diagnostics and abundance analysis using emission line fluxes measured in ionzed nebulae. It uses the AtomNeb IDL library to read collision strengths and transition probabilities for collisionally excited lines (CEL), and recombination coefficients for recombination lines (RL). This IDL package can be used to determine interstellar extinctions, electron temperatures, electron densities, and ionic abundances from the measured fluxes of emission lines. It mainly contains the follwing API functions written purely in IDL/GDL:

  • API functions for collisionally excited lines (CEL) have been developed based on the algorithm of the FORTRAN program EQUIB originally written in FORTRAN by Howarth & Adams (1981), extended and customized by other people (R. Clegg, D. Ruffle, X.-W. Liu, C. Pritchet, B. Ercolano & R. Wesson). The program EQUIB calculates atomic level populations and line emissivities in statistical equilibrium in multi-level atoms for different physical conditions of the stratification layers where the chemical elements are ionized. Using the IDL/GDL implementation of the program EQUIB, electron temperatures, electron densities, and ionic abundances are determined from the measured fluxes of collisionally excited lines.
  • API functions for recombination lines (RL) have been developed based on the algorithm of the recombination scripts by X. W. Liu and Y. Zhang from output_mod.f90 included in the FORTRAN program MOCASSIN. These API functiosn are used to determine ionic abundances from recombination lines for some heavy element ions.
  • API functions for reddening and extinctions have been developed according to the methods of the reddening law functions from STSDAS IRAF Package, which are used to obtain interstellar extinctions and deredden measured fluxes based on different reddening laws.

Installation

Dependent IDL Packages

Installation in IDL

  • To install the proEQUIB library in the Interactive Data Language (IDL), you need to add the path of this package directory to your IDL path. For more information about the path management in IDL, read the tips for customizing IDL program path provided by Harris Geospatial Solutions or the IDL library installation note by David Fanning in the Coyote IDL Library.
  • This package requires IDL version 7.1 or later.

Installation in GDL

  • You can install the GNU Data Language (GDL) if you do not have it on your machine:

    • Linux (Fedora):
    sudo dnf install gdl
    
    • Linux (Ubuntu):
    sudo apt-get install gnudatalanguage
    
    • OS X:
    brew install gnudatalanguage
    
  • To install the proEQUIB library in GDL, you need to add the path of this package directory to your .gdl_startup file in your home directory:

    !PATH=!PATH + ':/home/proEQUIB/pro/'
    !PATH=!PATH + ':/home/proEQUIB/externals/misc/'
    !PATH=!PATH + ':/home/proEQUIB/externals/astron/pro/'
    !PATH=!PATH + ':/home/proEQUIB/externals/atomneb/pro/'
    

    You may also need to set GDL_STARTUP if you have not done in .bashrc (bash):

    export GDL_STARTUP=~/.gdl_startup
    

    or in .tcshrc (cshrc):

    setenv GDL_STARTUP ~/.gdl_startup
    
  • This package requires GDL version 0.9.8 or later.

How to Use

The Documentation of the IDL functions provides in detail in the API Documentation (equib.github.io/proEQUIB/doc).

See Jupyter Notebooks: Notebooks.ipynb

Run Jupyter Notebooks on Binder:

There are three main object units:

  • Collision Unit has the API functions for plasma diagnostics and abundance analysis of collisionally excited lines. Here are some examples of using Collision Unit:

    • Temperature:

      s2=obj_new('collision')
      s2->set,['s','ii']
      upper_levels='1,2,1,3/'
      lower_levels='1,5/'
      density = double(2550)
      line_flux_ratio=double(10.753)
      temperature=s2->calc_temperature(line_flux_ratio=line_flux_ratio, density=density, $
                                       upper_levels=upper_levels, lower_levels=lower_levels)
      print, "Electron Temperature:", temperature

      which gives:

      Electron Temperature:       7920.2865
      
    • Density:

      s2=obj_new('collision')
      s2->set,['s','ii']
      upper_levels='1,2/'
      lower_levels='1,3/'
      temperature=double(7000.0);
      line_flux_ratio=double(1.506);
      density=s2->calc_density(line_flux_ratio=line_flux_ratio, temperature=temperature, $
                               upper_levels=upper_levels, lower_levels=lower_levels)
      print, "Electron Density:", density

      which gives:

      Electron Density:       2312.6395
      
    • Ionic Abundance:

      o3=obj_new('collision')
      o3->set,['o','iii']
      levels5007='3,4/'
      temperature=double(10000.0)
      density=double(5000.0)
      iobs5007=double(1200.0)
      Abb5007=o3->calc_abundance(temperature=temperature, density=density, $
                            line_flux=iobs5007, atomic_levels=levels5007)
      print, 'N(O^2+)/N(H+):', Abb5007

      which gives:

      N(O^2+)/N(H+):   0.00041256231
      
    • Emissivity:

      o3=obj_new('collision')
      o3->set,['o','iii']
      levels5007='3,4/'
      temperature=double(10000.0)
      density=double(5000.0)
      iobs5007=double(1200.0)
      emis=o3->calc_emissivity(temperature=temperature, density=density, $
                          atomic_levels=levels5007)
      print, 'Emissivity(O III 5007):', emis

      which gives:

      Emissivity(O III 5007):   3.6041012e-21
      
    • Atomic Level Population:

      s2=obj_new('collision')
      s2->set,['s','ii']
      density = double(1000)
      temperature=double(10000.0);
      Nlj=s2->calc_populations(temperature=temperature, density=density)
      print, 'Populations:', Nlj

      which prints:

      Populations: 0.96992832 0.0070036315 0.023062261 2.6593671e-06 3.1277019e-06
      
    • Critical Density:

      s2=obj_new('collision')
      s2->set,['s','ii']
      temperature=double(10000.0)
      N_crit=s2->calc_crit_density(temperature=temperature)
      print, 'Critical Densities:', N_crit

      which gives:

      Critical Densities: 0.0000000 5007.8396 1732.8414 1072685.0 2220758.1
      
    • All Ionic Level Information:

      o3=obj_new('collision')
      o3->set,['o','iii']
      temperature=double(10000.0)
      density=double(5000.0)
      o3->print_ionic, temperature=temperature, density=density

      which gives:

      Temperature =   10000.0 K
      Density =    1000.0 cm-3
      
      Level    Populations   Critical Densities
      Level 1:   3.063E-01   0.000E+00
      Level 2:   4.896E-01   4.908E+02
      Level 3:   2.041E-01   3.419E+03
      Level 4:   4.427E-05   6.853E+05
      Level 5:   2.985E-09   2.547E+07
      
       2.597E-05
           88.34um
           (2-->1)
       2.859E-22
      
       0.000E+00   9.632E-05
           32.66um      51.81um
           (3-->1)     (3-->2)
       0.000E+00   7.536E-22
      
       2.322E-06   6.791E-03   2.046E-02
         4932.60A    4960.29A    5008.24A
          (4-->1)     (4-->2)     (4-->3)
       4.140E-25   1.204E-21   3.593E-21
      
       0.000E+00   2.255E-01   6.998E-04   1.685E+00
         2315.58A    2321.67A    2332.12A    4364.45A
          (5-->1)     (5-->2)     (5-->3)     (5-->4)
       0.000E+00   5.759E-24   1.779E-26   2.289E-23
      
      H-beta emissivity: 1.237E-25 N(H+) Ne  [erg/s]
      
  • Recombination Unit has the API functions for plasma diagnostics and abundance analysis of recombination lines. Here are some examples of using Recombination Unit:

    • He+ Ionic Abundance:

      he1=obj_new('recombination')
      he1->set,['he','ii'] ; He I
      temperature=double(10000.0)
      density=double(5000.0)
      he_i_4471_flux= 2.104
      linenum=10; 4471.50
      Abund_he_i=he1->calc_abundance(temperature=temperature, density=density, $
                                    linenum=linenum, line_flux=he_i_4471_flux)
      print, 'N(He^+)/N(H^+):', Abund_he_i

      which gives:

      N(He^+)/N(H^+):     0.040848393
      
    • He++ Ionic Abundance:

      he2=obj_new('recombination')
      he2->set,['he','iii'] ; He II
      temperature=double(10000.0)
      density=double(5000.0)
      he_ii_4686_flux = 135.833
      Abund_he_ii=he2->calc_abundance(temperature=temperature, density=density, $
                                      line_flux=he_ii_4686_flux)
      print, 'N(He^2+)/N(H^+):', Abund_he_ii

      which gives:

      N(He^2+)/N(H^+):      0.11228817
      
    • C++ Ionic Abundance:

      c2=obj_new('recombination')
      c2->set,['c','iii'] ; C II
      temperature=double(10000.0)
      density=double(5000.0)
      wavelength=6151.43
      c_ii_6151_flux = 0.028
      Abund_c_ii=c2->calc_abundance(temperature=temperature, density=density, $
                                    wavelength=wavelength, line_flux=c_ii_6151_flux)
      print, 'N(C^2+)/N(H+):', Abund_c_ii

      which gives:

      N(C^2+)/N(H+):   0.00063404650
      
    • C3+ Ionic Abundance:

      c3=obj_new('recombination')
      c3->set,['c','iv'] ; C III
      temperature=double(10000.0)
      density=double(5000.0)
      wavelength=4647.42
      c_iii_4647_flux = 0.107
      Abund_c_iii=c3->calc_abundance(temperature=temperature, density=density, $
                                      wavelength=wavelength, line_flux=c_iii_4647_flux)
      print, 'N(C^3+)/N(H+):', Abund_c_iii

      which gives:

      N(C^3+)/N(H+):   0.00017502840
      
    • N++ Ionic Abundance:

      n2=obj_new('recombination')
      n2->set,['n','iii'] ; N II
      wavelength=4442.02
      n_ii_4442_flux = 0.017
      Abund_n_ii=n2->calc_abundance(temperature=temperature, density=density, $
                                    wavelength=wavelength, line_flux=n_ii_4442_flux)
      print, 'N(N^2+)/N(H+):', Abund_n_ii

      which gives:

      N(N^2+)/N(H+):   0.00069297541
      
    • N3+ Ionic Abundance:

      n3=obj_new('recombination')
      n3->set,['n','iv'] ; N III
      wavelength=4640.64
      n_iii_4641_flux = 0.245
      Abund_n_iii=n3->calc_abundance(temperature=temperature, density=density, $
                                      wavelength=wavelength, line_flux=n_iii_4641_flux)
      print, 'N(N^3+)/N(H+):', Abund_n_iii

      which gives:

      N(N^3+)/N(H+):   6.3366175e-05
      
    • O++ Ionic Abundance:

      o2=obj_new('recombination')
      o2->set,['o','iii'] ; O II
      wavelength=4613.68
      o_ii_4614_flux = 0.009
      Abund_o_ii=o2->calc_abundance(temperature=temperature, density=density, $
                                    wavelength=wavelength, line_flux=o_ii_4614_flux)
      print, 'N(O^2+)/N(H+):', Abund_o_ii

      which gives:

      N(O^2+)/N(H+):    0.0018886330
      
    • Ne++ Ionic Abundance:

      ne2=obj_new('recombination')
      ne2->set,['ne','iii'] ; Ne II
      wavelength=3777.14
      ne_ii_3777_flux = 0.056
      Abund_ne_ii=ne2->calc_abundance(temperature=temperature, density=density, $
                                      wavelength=wavelength, line_flux=ne_ii_3777_flux)
      print, 'N(Ne^2+)/N(H+):', Abund_ne_ii

      which gives:

      N(Ne^2+)/N(H+):   0.00043376850
      
    • He I Emissivity:

      he1=obj_new('recombination')
      he1->set,['he','ii'] ; He I
      temperature=double(10000.0)
      density=double(5000.0)
      linenum=10; 4471.50
      emiss_he_i=he1->calc_emissivity(temperature=temperature, density=density, $
                                      linenum=linenum)
      print, 'He I Emissivity:', emiss_he_i

      which gives:

      He I Emissivity:   6.3822830e-26
      
    • He II Emissivity:

      he2=obj_new('recombination')
      he2->set,['he','iii'] ; He II
      temperature=double(10000.0)
      density=double(5000.0)
      emiss_he_ii=he2->calc_emissivity(temperature=temperature, density=density)
      print, 'He II Emissivity:', emiss_he_ii

      which gives:

      He II Emissivity:   1.4989134e-24
      
    • C II Emissivity:

      c2=obj_new('recombination')
      c2->set,['c','iii'] ; C II
      temperature=double(10000.0)
      density=double(5000.0)
      wavelength=6151.43
      emiss_c_ii=c2->calc_emissivity(temperature=temperature, density=density, $
                                     wavelength=wavelength)
      print, 'C II Emissivity:', emiss_c_ii

      which gives:

      C II Emissivity:   5.4719511e-26
      
    • C III Emissivity:

      c3=obj_new('recombination')
      c3->set,['c','iv'] ; C III
      temperature=double(10000.0)
      density=double(5000.0)
      wavelength=4647.42
      emiss_c_iii=c3->calc_emissivity(temperature=temperature, density=density, $
                                      wavelength=wavelength)
      print, 'C III Emissivity:', emiss_c_iii

      which gives:

      C III Emissivity:   7.5749632e-25
      
    • N II Emissivity:

      n2=obj_new('recombination')
      n2->set,['n','iii'] ; N II
      wavelength=4442.02
      emiss_n_ii=n2->calc_emissivity(temperature=temperature, density=density, $
                                     wavelength=wavelength)
      print, 'N II Emissivity:', emiss_n_ii

      which gives:

      N II Emissivity:   3.0397397e-26
      
    • N III Emissivity:

      n3=obj_new('recombination')
      n3->set,['n','iv'] ; N III
      wavelength=4640.64
      emiss_n_iii=n3->calc_emissivity(temperature=temperature, density=density, $
                                      wavelength=wavelength)
      print, 'N III Emissivity:', emiss_n_iii

      which gives:

      N III Emissivity:   4.7908644e-24
      
    • O II Emissivity:

      o2=obj_new('recombination')
      o2->set,['o','iii'] ; O II
      wavelength=4613.68
      emiss_o_ii=o2->calc_emissivity(temperature=temperature, density=density, $
                                     wavelength=wavelength)
      print, 'O II Emissivity:', emiss_o_ii

      which gives:

      O II Emissivity:   5.9047319e-27
      
    • Ne II Emissivity:

      ne2=obj_new('recombination')
      ne2->set,['ne','iii'] ; Ne II
      wavelength=3777.14
      emiss_ne_ii=ne2->calc_emissivity(temperature=temperature, density=density, $
                                       wavelength=wavelength)
      print, 'Ne II Emissivity:', emiss_ne_ii

      which gives:

      Ne II Emissivity:   1.5996881e-25
      
  • Reddening Unit has the API functions for estimating logarithmic extinctions at H-beta and dereddening observed fluxes based on reddening laws and extinctions. Here are some examples of using Reddening Unit:

    • Reddening Law Function:

      ext=obj_new('reddening')
      wavelength=6563.0
      R_V=3.1
      fl=ext->redlaw(wavelength, rv=R_V, ext_law='GAL')
      print, 'fl(6563):', fl

      which gives:

      fl(6563):     -0.32013816
      
    • Galactic Reddening Law Function based on Seaton (1979), Howarth (1983), & CCM (1983):

      ext=obj_new('reddening')
      wavelength=6563.0
      R_V=3.1
      fl=ext->redlaw_gal(wavelength, rv=R_V)
      print, 'fl(6563):', fl

      which gives:

      fl(6563):     -0.32013816
      
    • Galactic Reddening Law Function based on Savage & Mathis (1979):

      ext=obj_new('reddening')
      wavelength=6563.0
      fl=ext->redlaw_gal2(wavelength)
      print, 'fl(6563):', fl

      which gives:

      fl(6563):     -0.30925984
      
    • Reddening Law Function based on Cardelli, Clayton & Mathis (1989):

      ext=obj_new('reddening')
      wavelength=6563.0
      R_V=3.1
      fl=ext->redlaw_ccm(wavelength, rv=R_V)
      print, 'fl(6563):', fl

      which gives:

      fl(6563):     -0.29756615
      
    • Galactic Reddening Law Function based on Whitford (1958), Seaton (1977), & Kaler(1976):

      ext=obj_new('reddening')
      wavelength=6563.0
      fl=ext->redlaw_jbk(wavelength)
      print, 'fl(6563):', fl

      which gives:

      fl(6563):     -0.33113684
      
    • Reddening Law Function based on Fitzpatrick & Massa (1990), Fitzpatrick (1999), Misselt (1999):

      ext=obj_new('reddening')
      wavelength=6563.0
      R_V=3.1
      fmlaw='AVGLMC'
      fl=ext->redlaw_fm(wavelength, fmlaw=fmlaw, rv=R_V)
      print, 'fl(6563):', fl

      which gives:

      fl(6563):     -0.35053032
      
    • Reddening Law Function for the Small Magellanic Cloud:

      ext=obj_new('reddening')
      wavelength=6563.0
      fl=ext->redlaw_smc(wavelength)
      print, 'fl(6563):', fl

      which gives:

      fl(6563):     -0.22659261
      
    • Reddening Law Function for the Large Magellanic Cloud:

      ext=obj_new('reddening')
      wavelength=6563.0
      fl=ext->redlaw_lmc(wavelength)
      print, 'fl(6563):', fl

      which gives:

      fl(6563):     -0.30871187
      
    • Dereddening Relative Flux:

      ext=obj_new('reddening')
      wavelength=6563.0
      m_ext=1.0
      flux=1.0
      ext_law='GAL'
      R_V=3.1
      flux_deredden=ext->deredden_relflux(wavelength, flux, m_ext, ext_law=ext_law, rv=R_V)
      print, 'dereddened flux(6563)', flux_deredden

      which gives:

      dereddened flux(6563)       0.47847785
      
    • Dereddening Absolute Flux:

      ext=obj_new('reddening')
      wavelength=6563.0
      m_ext=1.0
      flux=1.0
      ext_law='GAL'
      R_V=3.1
      flux_deredden=ext->deredden_flux(wavelength, flux, m_ext, ext_law=ext_law, rv=R_V)
      print, 'dereddened flux(6563)', flux_deredden

      which gives:

      dereddened flux(6563)      4.7847785
      

Documentation

For more information on how to use the API functions from the proEQUIB libray, please read the API Documentation published on equib.github.io/proEQUIB.

References

Citation

Using the proEQUIB IDL library in a scholarly publication? Please cite these papers:

@article{Danehkar2018,
  author = {{Danehkar}, Ashkbiz},
  title = {proEQUIB: IDL Library for Plasma Diagnostics and Abundance Analysis},
  journal = {Journal of Open Source Software},
  volume = {3},
  number = {32},
  pages = {899},
  year = {2018},
  doi = {10.21105/joss.00899}
}

and if you use the pyEQUIB Python package:

@article{Danehkar2020,
  author = {{Danehkar}, Ashkbiz},
  title = {pyEQUIB Python Package, an addendum to proEQUIB: IDL Library
           for Plasma Diagnostics and Abundance Analysis},
  journal = {Journal of Open Source Software},
  volume = {5},
  number = {55},
  pages = {2798},
  year = {2020},
  doi = {10.21105/joss.02798}
}

Learn More

Documentation https://equib.github.io/proEQUIB/doc/
Repository https://github.com/equib/proEQUIB
Issues & Ideas https://github.com/equib/proEQUIB/issues
DOI 10.21105/joss.00899
Archive 10.5281/zenodo.1890336