Skip to content

Commit

Permalink
fix 422
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Dec 2, 2023
1 parent 54703d0 commit 288c509
Showing 1 changed file with 11 additions and 8 deletions.
19 changes: 11 additions & 8 deletions codes/quantum/qubits/small_distance/small/stab_4_2_2.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,11 @@ description: |
\begin{align}
|\overline{\pm}\rangle = \frac{1}{2}(|00\rangle \pm |11\rangle)^{\otimes 2}~.\\
\end{align}
This code can be thought of as a concatenation of a two-qubit bit-flip with a two-qubit phase-flip code. The subcode \(\{|\overline{10}\rangle,|\overline{11}\rangle\}\) \cite{arxiv:quant-ph/0103042} has also been studied against amplitude-damping noise. This subcode \cite{arxiv:2006.03071} and the subcodes \(\{|\overline{00}\rangle,|\overline{10}\rangle\}\) \cite{arxiv:1912.09410}, \(\{|\overline{00}\rangle,|\overline{01}\rangle\}\) \cite{arXiv:2102.06132}, and \(\{|\overline{00}\rangle,|\overline{11}\rangle\}\) \cite{arXiv:2102.13071} are small planar surface codes.
This code can be thought of as a concatenation of a two-qubit bit-flip with a two-qubit phase-flip code.
protection: |
Detects a single-qubit error \cite{arXiv:quant-ph/9603031} or single erasure \cite{arXiv:quant-ph/9610042}. Not able to correct arbitrary single-qubit errors because \( \lfloor \frac{d-1}{2} \rfloor =0 \). Approximately corrects a single amplitude damping error \cite{arXiv:quant-ph/9704002} (see also \cite{arxiv:quant-ph/0103042}).
protection: 'Detects a single-qubit error \cite{arXiv:quant-ph/9603031} or single erasure \cite{arXiv:quant-ph/9610042}. Not able to correct arbitrary single-qubit errors because \( \lfloor \frac{d-1}{2} \rfloor =0 \). Approximately corrects a single amplitude damping error \cite{arXiv:quant-ph/9704002}.'
features:
transversal_gates: 'Transversal Pauli, Hadamard, and two-qubit \(R\) \cite{arxiv:1610.03507}.
Expand All @@ -54,8 +56,6 @@ realizations:
- 'Logical gates for the \(\{|\overline{00}\rangle,|\overline{11}\rangle\}\) subcode, treated as a planar code, realized in superconducting circuits \cite{arXiv:2102.13071}.'
- 'The CZ magic state has been realized on an IBM heavy-hex superconducting circuit device \cite{arxiv:2305.13581}.'

notes:
- 'Concatenating \([[4,2,2]]\) code with surface code can generate 2D topological code with a reasonable circuit-based threshold \cite{doi:10.26421/QIC16.15-16-1}.'

relations:
parents:
Expand All @@ -68,23 +68,26 @@ relations:
- code_id: iceberg
- code_id: group_4_2_2
detail: 'The four group-qudit code reduces to the four-rotor code for \(G= \mathbb{Z}_2\).'
- code_id: quantum_polar
detail: '\([[4,2,2]]\) code is a small quantum polar code \cite{manual:{Kyungjoo Noh, \href{https://github.com/errorcorrectionzoo/eczoo_data/files/7652763/Leung_code_as_quantum_polar_code.pdf}{Leung code as quantum polar code}, 2017.}}.'
cousins:
- code_id: rotated_surface
detail: 'Various \([[4,1,2]]\) subcodes are small rotated planar codes \cite{arxiv:2006.03071,arxiv:1912.09410,arXiv:2102.06132,arXiv:2102.13071}.'
detail: 'The subcodes \(\{|\overline{10}\rangle,|\overline{11}\rangle\}\) \cite{arxiv:2006.03071}, \(\{|\overline{00}\rangle,|\overline{10}\rangle\}\) \cite{arxiv:1912.09410}, \(\{|\overline{00}\rangle,|\overline{01}\rangle\}\) \cite{arXiv:2102.06132}, and \(\{|\overline{00}\rangle,|\overline{11}\rangle\}\) \cite{arXiv:2102.13071} of the \([[4,2,2]]\) code are small planar rotated surface codes.'
- code_id: bacon_shor
detail: 'The error-detecting \([[4,1,1,2]]\) Bacon-Shor code, which reduces to a subcode of the \hyperref[code:stab_4_2_2]{\([[4,2,2]]\) code} for a particular gauge configuration, has gauge operators \(\{XXII,IIXX,ZIZI,IZIZ\}\).'
- code_id: quantum_parity
detail: '\([[4,1,2]]\) subcode \(\{|\overline{00}\rangle,|\overline{01}\rangle\}\) is the smallest member of the sub-family of \([[m^2,1,m]]\) QPC codes.'
detail: 'The \([[4,1,2]]\) subcode \(\{|\overline{00}\rangle,|\overline{01}\rangle\}\) is the smallest member of the sub-family of \([[m^2,1,m]]\) QPC codes.'
- code_id: stab_5_1_3
detail: 'The \([[4,2,2]]\) code can be derived from the five-qubit code using a protocol that converts an \([[n,k,d]]\) code into an \([[n-1, k+1, d-1]]\) code; see Sec. 3.5 in Gottesman \cite{arXiv:quant-ph/9705052}.'
- code_id: quantum_polar
detail: '\([[4,2,2]]\) code is a small quantum polar code \cite{manual:{Kyungjoo Noh, \href{https://github.com/errorcorrectionzoo/eczoo_data/files/7652763/Leung_code_as_quantum_polar_code.pdf}{Leung code as quantum polar code}, 2017.}}.'
- code_id: approximate_qecc
detail: '\([[4,1,2]]\) subcodes \(\{|\overline{00}\rangle,|\overline{10}\rangle\}\) \cite{arXiv:quant-ph/9704002} and \(\{|\overline{01}\rangle,|\overline{11}\rangle\}\) \cite{arxiv:quant-ph/0103042} approximately correct a single amplitude damping error.'
- code_id: binomial
detail: '\([[4,1,2]]\) subcode consisting of \(\{|\overline{00}\rangle\) and any other codeword reduces to the \(0,2,4\) binomial code when the basis labels in each codeword are written as in base-ten. Such a mapping can be generalized \cite{manual:{Linshu Li, private communication, 2018}}.'
- code_id: heavy_hex
detail: 'Magic states prepared using the \([[4,1,2]]\) subcode can be injected into a largest heavy-hex code \cite{arxiv:2110.04285,arxiv:2305.13581}.'
- code_id: quantum_concatenated
detail: 'Concatenating \([[4,2,2]]\) code with surface code can generate 2D topological code with a reasonable circuit-based threshold \cite{doi:10.26421/QIC16.15-16-1}.'


# Begin Entry Meta Information
_meta:
Expand Down

0 comments on commit 288c509

Please sign in to comment.