Skip to content

Commit

Permalink
Gottesman refs
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Jan 26, 2025
1 parent d84b078 commit 2c4e603
Show file tree
Hide file tree
Showing 4 changed files with 4 additions and 4 deletions.
2 changes: 1 addition & 1 deletion codes/quantum/qubits/qubits_into_qubits.yml
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ protection: |
Other types of quantum weight enumerators are the Rains unitary enumerators \cite{arxiv:quant-ph/9612015} and the \textit{Rains shadow enumerators} \cite{arxiv:quant-ph/9611001} (see also \cite{arxiv:quant-ph/0406063}), and \textit{signed weight enumerators} taking into account the sign of the expectation value of a Pauli string \cite{arxiv:1702.06990}.
Rains shadow enumerators are related to Bell sampling \cite{arxiv:2408.16914}.
These notions can be generalized to qudit codes and other error bases \cite{doi:10.1016/j.aam.2020.102085,arxiv:2211.02756,arxiv:2308.05152}.
These notions can be generalized to qudit codes and other error bases \cite{arxiv:0810.2574,doi:10.1016/j.aam.2020.102085,arxiv:2211.02756,arxiv:2308.05152}.
There are techniques to compute them for general codes \cite{arxiv:2308.05152}.
Semidefinite programming (SDP) hierarchies and a quantum Delsarte bound have been developed \cite{arxiv:2408.10323}.
Expand Down
2 changes: 1 addition & 1 deletion codes/quantum/qubits/stabilizer/qubit_stabilizer.yml
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ features:
- 'Logical Clifford gates can be performed by physical Clifford circuits that permute logical Pauli operators \cite{arxiv:1803.06987}.'
- 'With pieceable fault-tolerance, any \hyperref[topic:degeneracy]{non-degenerate} stabilizer code with a complete set of fault-tolerant single-qubit Clifford gates has a universal set of non-transversal fault-tolerant gates \cite{arxiv:1603.03948}.'
- 'Non-Clifford gates can be done using \textit{gate teleportation}, in which a gate can be obtained from a particular \textit{magic state} (a.k.a. resource state) \cite{arxiv:quant-ph/9908010,arxiv:quant-ph/0002039}. Such protocols can be made fault tolerant with the help of magic-state distillation \cite{arxiv:quant-ph/0403025,arxiv:quant-ph/0410199}. There exist various performance metrics for magic-state distillation \cite{arxiv:quant-ph/9806094,arxiv:1807.10296,arxiv:1901.03322,arxiv:1904.01124} focusing mostly on distilling \(T\) gates. This Clifford+T gate set is self-testable \cite{arxiv:quant-ph/9904108}. Gate errors in magic-state distillation protocols can sometimes add up destructively \cite{arxiv:1612.01011}. The Hadamard gate cannot be obtained from a magic state \cite{arxiv:2312.03515}. A magic state arising from a generalized controlled \(Z\) gate is a type of hypergraph state \cite{arxiv:1211.5554,arxiv:1404.6492,arxiv:1410.3904} (see \cite{arxiv:2310.16982,arxiv:2404.19005}). The Toffoli gate can be distilled from a particular two-qubit state \cite{arxiv:quant-ph/9905027}. Magic-state protocol fidelity is upper bounded by the fidelity of protocols that have undergone stabilizer reduction, and there exist non-distillable states outside of the stabilizer octahedron \cite{arxiv:0908.0836,arxiv:0908.0838}.'
- 'Certain operations can be implemented in a fault-tolerant version \cite{arxiv:0806.0875,arxiv:0904.2143,arxiv:1312.0165} of holonomic quantum computation \cite{arxiv:quant-ph/9904011}.'
- 'Certain operations can be implemented in a fault-tolerant version \cite{arxiv:0806.0875,arxiv:0812.4682,arxiv:0904.2143,arxiv:1312.0165} of holonomic quantum computation \cite{arxiv:quant-ph/9904011}.'
- 'Magic-state distillation and circuit compilation based on the SWAP test \cite{arxiv:1403.5280}.'
- 'Logical circuit synthesis (LCS) taking in a code and a logical Clifford operation and producing a circuit acting on the physical qubits \cite{arxiv:1907.00310}.'
- 'Clifford stabilizer circuits can be compiled using tableau manipulation \cite{arxiv:2404.19408}.'
Expand Down
2 changes: 1 addition & 1 deletion codes/quantum/qubits/subsystem/subsystem_stabilizer.yml
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ protection: |
features:
encoders:
- 'A subsystem codeword can be encoded with the Clifford circuits of the stabilizer code corresponding to treating all gauge qubits as logical qubits \cite{arxiv:0806.4954}.'
- 'A subsystem codeword can be encoded with the Clifford circuits of the stabilizer code corresponding to treating all gauge qubits as logical qubits. One can use the standard-form or the conjugation method \cite{arxiv:0806.4954,arxiv:0810.2574}.'
general_gates:
- 'Logical Clifford gates can be implemented fault-tolerantly for subsystem codes of distance at least three \cite{arxiv:2210.14074}.'
code_capacity_threshold:
Expand Down
2 changes: 1 addition & 1 deletion codes/quantum/qudits_galois/stabilizer/bch/galois_bch.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ logical: galois

name: 'Galois-qudit BCH code'
short_name: 'Galois-qudit BCH'
introduced: '\cite{arxiv:quant-ph/0501126,arxiv:quant-ph/0604102,doi:10.1007/11750321_63,doi:10.1109/TIT.2006.890730,arxiv:0812.5104,doi:10.26421/QIC13.1-2-3,doi:10.1103/PhysRevA.80.042331,arxiv:1705.00239,arxiv:2007.13309}'
introduced: '\cite{arxiv:quant-ph/0501126,arxiv:quant-ph/0604102,doi:10.1007/11750321_63,doi:10.1109/TIT.2006.890730,arxiv:0810.2574,arxiv:0812.5104,doi:10.26421/QIC13.1-2-3,doi:10.1103/PhysRevA.80.042331,arxiv:1705.00239,arxiv:2007.13309}'

description: |
True Galois-qudit stabilizer code constructed from BCH codes via either the Hermitian construction or the Galois-qudit CSS construction.
Expand Down

0 comments on commit 2c4e603

Please sign in to comment.