Skip to content

Commit

Permalink
Merge pull request #3 from jpata/master
Browse files Browse the repository at this point in the history
Update üle pika aja, et panna Calibration plote
  • Loading branch information
aaditep authored Feb 5, 2021
2 parents e383e69 + 501222a commit 8be4e3a
Show file tree
Hide file tree
Showing 126 changed files with 10,750 additions and 867,042 deletions.
36 changes: 36 additions & 0 deletions .github/workflows/test.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
name: CI

on:
push:
branches: [ master ]
pull_request:
branches: [ master ]

workflow_dispatch:

jobs:
delphes-tf:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Install python deps
run: |
sudo apt install python3 python3-pip wget
sudo python3 -m pip install --upgrade pip
sudo python3 -m pip install --upgrade setuptools
sudo python3 -m pip install tensorflow==2.3 setGPU sklearn matplotlib mplhep pandas scipy uproot3 uproot3-methods awkward0 keras-tuner networkx
- name: Run delphes TF model
run: ./scripts/local_test_delphes_tf.sh

cms-tf:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Install python deps
run: |
sudo apt install python3 python3-pip wget
sudo python3 -m pip install --upgrade pip
sudo python3 -m pip install --upgrade setuptools
sudo python3 -m pip install tensorflow==2.3 setGPU sklearn matplotlib mplhep pandas scipy uproot3 uproot3-methods awkward0 keras-tuner networkx
- name: Run CMS TF model
run: ./scripts/local_test_cms_tf.sh
6 changes: 6 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,9 @@ data/*
*.pth
test/__pycache__/

mlpf/pytorch/__pycache__/*
mlpf/plotting/__pycache__/*
mlpf/pytorch/data
test_tmp/
test_tmp_delphes/
.DS_Store
157 changes: 18 additions & 139 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,148 +1,27 @@
[![Build Status](https://travis-ci.org/jpata/particleflow.svg?branch=master)](https://travis-ci.org/jpata/particleflow)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4452283.svg)](https://doi.org/10.5281/zenodo.4452283)
[![CI](https://github.com/jpata/particleflow/workflows/CI/badge.svg)](https://github.com/jpata/particleflow/actions)

Notes on modernizing CMS particle flow with machine learning. Internal documentation and results can be found at https://twiki.cern.ch/twiki/bin/view/CMS/MLParticleFlow.
<p float="left">
<img src="delphes/plots/event.png" alt="Simulated event" width="600"/>
</p>

Quickstart with training:
<p float="left">
<img src="delphes/plots/num_particles.png" alt="Particle multiplicity" width="300"/>
<img src="delphes/plots/res_pid2.png" alt="Neutral hadron resolution" width="300"/>
</p>

```
#get the code
git clone https://github.com/jpata/particleflow.git
cd particleflow
## MLPF with Delphes

#run a small local test including data prep and training
./scripts/local_test.sh
```
Short instructions with a single test file in [notebooks/delphes-tf-mlpf-quickstart.ipynb](notebooks/delphes-tf-mlpf-quickstart.ipynb).

# Overview
Long instructions for reproducing the full training from scratch in [README_delphes.md](README_delphes.md).
The plots can be generated using the notebook [delphes/resolution_checks.ipynb](delphes/resolution_checks.ipynb).

- [x] set up datasets and ntuples for detailed PF analysis
- [x] advanced CMSSW version with generator truth in [Validation/RecoParticleFlow/PFAnalysis.cc](https://github.com/jpata/cmssw/blob/jpata_pfntuplizer/Validation/RecoParticleFlow/plugins/PFAnalysis.cc)
- [x] reproduce existing PFCandidates with machine learning
- [x] end-to-end training of elements to MLPF-candidates using GNN-s
- [ ] reconstruct genparticles directly from detector elements a la HGCAL, neutrino experiments etc
- [x] set up datasets for regression genparticles from elements
- [x] Develop a baseline ML-PF model that is able to regress pions and neutral hadrons
- [ ] develop improved loss function for event-to-event comparison: EMD, GAN
- [ ] Improve ML-PF model physics performance
- [ ] Improve ML-PF model computational performance
- [x] Create CMSSW EDProducer for ML-PF particles
- [x] GPU-evaluation of MLPFProducer in CMSSW
- [x] Implement a simple tensorflow based ML-PF training for evalutation in CMSSW
- [ ] GPU code for existing PF algorithms
- [x] test CLUE for element to block clustering
- [ ] port CLUE to PFBlockAlgo in CMSSW
- [ ] parallelize PFAlgo calls on blocks
- [ ] GPU-implementation of PFAlgo
- [ ] GPU-implementation of PFBlockAlgo distances
### Delphes dataset
The dataset is available from zenodo: https://doi.org/10.5281/zenodo.4452283.

## Presentations

- CMS ML Forum, 2020-09-30: https://indico.cern.ch/event/952419/contributions/4041555/attachments/2113070/3554608/2020_09_30.pdf
- CMS ML Town Hall, 2020-07-03: https://indico.cern.ch/event/922319/contributions/3928284/attachments/2068518/3472668/2020_07_02.pdf
- FastML meeting, 2020-05-29: https://indico.cern.ch/event/923986/contributions/3883991/attachments/2047940/3431648/2020_05_28.pdf
- CMS PF group, 2020-05-22: https://indico.cern.ch/event/921949/contributions/3873351/attachments/2042984/3422056/2020_05_22.pdf
- CMS scouting group, 2020-05-15: https://indico.cern.ch/event/894101/contributions/3862093/attachments/2038019/3412747/2020_05_13.pdf
- CMS PF group, 2020-04-24: https://indico.cern.ch/event/912351/contributions/3839281/attachments/2026117/3389540/2020_04_24.pdf
- Caltech CMS group ML meeting, 2020-04-16: https://indico.cern.ch/event/909688/contributions/3826957/attachments/2021475/3380133/2020_04_15_caltechml.pdf
- ML4RECO meeting, 2020-04-09: https://indico.cern.ch/event/908361/contributions/3821957/attachments/2017888/3373038/2020_04_08.pdf
- CMS PF group, 2020-03-13: https://indico.cern.ch/event/897397/contributions/3786360/attachments/2003108/3344534/2020_03_13.pdf
- ML4RECO meeting, 2020-03-12: https://indico.cern.ch/event/897281/contributions/3784715/attachments/2002839/3343921/2020_03_12.pdf
- ML4RECO meeting, 2020-03-04: https://indico.cern.ch/event/895228/contributions/3776739/attachments/1998928/3335497/2020_03_04.pdf
- CMS PF group, 2020-02-28: https://indico.cern.ch/event/892992/contributions/3766807/attachments/1995348/3328771/2020_02_28.pdf
- CMS PF group, 2020-01-31: https://indico.cern.ch/event/885043/contributions/3730304/attachments/1979098/3295074/2020_01_30_pf.pdf
- FNAL HGCAL ML meeting, 2020-01-30: https://indico.cern.ch/event/884801/contributions/3730336/attachments/1978912/3294638/2020_01_30.pdf
- Caltech group meeting, 2020-01-28: https://indico.cern.ch/event/881683/contributions/3714961/attachments/1977131/3291096/2020_01_21.pdf
- CMS PF group, 2020-01-17: https://indico.cern.ch/event/862200/contributions/3706909/attachments/1971145/3279010/2020_01_16.pdf
- CMS PF group, 2019-11-22: https://indico.cern.ch/event/862195/contributions/3649510/attachments/1949957/3236487/2019_11_22.pdf
- CMS PF group, 2019-11-08: https://indico.cern.ch/event/861409/contributions/3632204/attachments/1941376/3219105/2019_11_08.pdf
- Caltech ML meeting, 2019-10-31: https://indico.cern.ch/event/858644/contributions/3623446/attachments/1936711/3209684/2019_10_07_pf.pdf
- Caltech ML meeting, 2019-09-19: https://indico.cern.ch/event/849944/contributions/3572113/attachments/1911520/3158764/2019_09_18_pf_ml.pdf
- CMS PF group, 2019-09-10: https://indico.cern.ch/event/846887/contributions/3557300/attachments/1904664/3145310/2019_09_10_pf_refactoring.pdf
- Caltech ML meeting, 2019-09-05: https://indico.cern.ch/event/845349/contributions/3554787/attachments/1902837/3141723/2019_09_05_pfalgo.pdf

In case the above links do not load, the presentations are also mirrored on the following CERNBox link: https://cernbox.cern.ch/index.php/s/GkIRJU1YZuai4ix

## Other relevant issues, repos, PR-s:

- https://github.com/jpata/cmssw/issues/56
- https://github.com/cms-sw/cmssw/pull/29361

## Setting up the code

CMSSW recipe from [setup.sh](test/setup.sh):

```bash
source /cvmfs/cms.cern.ch/cmsset_default.sh
export SCRAM_ARCH=slc7_amd64_gcc820

scramv1 project CMSSW CMSSW_11_1_0_pre5
cd CMSSW_11_1_0_pre5/src
eval `scramv1 runtime -sh`
git cms-init

git remote add -f jpata https://github.com/jpata/cmssw
git fetch -a jpata

git cms-addpkg RecoParticleFlow/PFProducer
git cms-addpkg Validation/RecoParticleFlow
git cms-addpkg SimGeneral/CaloAnalysis/
git cms-addpkg SimGeneral/MixingModule/

git checkout -b jpata_pfntuplizer --track jpata/jpata_pfntuplizer

#just to get an exact version of the code
git checkout 0fdcc0e8b6d848473170f0dc904468fa8a953aa8

#download the MLPF weight file
mkdir -p RecoParticleFlow/PFProducer/data/mlpf/
wget http://login-1.hep.caltech.edu/~jpata/particleflow/2020-05/models/mlpf_2020_05_19.pb -O RecoParticleFlow/PFProducer/data/mlpf/mlpf_2020_05_19.pb

scram b

#Run a small test of ML-PF
cmsRun RecoParticleFlow/PFProducer/test/mlpf_producer.py
edmDumpEventContent test.root | grep -i mlpf

#Run ML-PF within the reco framework up to ak4PFJets / ak4MLPFJets
cmsDriver.py step3 --runUnscheduled --conditions auto:phase1_2021_realistic \
-s RAW2DIGI,L1Reco,RECO,RECOSIM,EI,PAT \
--datatier MINIAODSIM --nThreads 1 -n 10 --era Run3 \
--eventcontent MINIAODSIM --geometry=DB.Extended \
--filein /store/relval/CMSSW_11_0_0_patch1/RelValQCD_FlatPt_15_3000HS_14/GEN-SIM-DIGI-RAW/PU_110X_mcRun3_2021_realistic_v6-v1/20000/087F3A84-A56F-784B-BE13-395D75616CC5.root \
--customise RecoParticleFlow/PFProducer/mlpfproducer_customize.customize_step3 \
--fileout file:step3_inMINIAODSIM.root
```

## Datasets

- May 2020
- TTbar with PU for PhaseI, privately generated, 20k events
- flat ROOT: `/storage/group/gpu/bigdata/particleflow/TTbar_14TeV_TuneCUETP8M1_cfi/pfntuple_*.root`
- pickled graph data: `/storage/group/gpu/bigdata/particleflow/TTbar_14TeV_TuneCUETP8M1_cfi/raw/*.pkl`
- processed pytorch: `/storage/user/jpata/particleflow/data/TTbar_14TeV_TuneCUETP8M1_cfi/processed/*.pt`
- processed TFRecord: `/storage/group/gpu/bigdata/particleflow/TTbar_14TeV_TuneCUETP8M1_cfi/tfr2/cand/*.tfrecords`

## Creating the datasets

```bash
cd mlpf/data
mkdir TTbar_14TeV_TuneCUETP8M1_cfi
python prepare_args.py > args.txt
condor_submit genjob.jdl
```

## Contents of the flat ROOT output ntuple

The ROOT ntuple contains all PFElements, PFCandidates and GenParticles, along with the links. The following code creates the networkx graph data and a normalized data table:

```bash
#process a single file from ROOT to pickle, saving each event into a separate file
python test/postprocessing2.py --input data/TTbar_14TeV_TuneCUETP8M1_cfi/pfntuple_1.root --events-per-file 1 --save-full-graph --save-normalized-table

#produce the pytorch processed dataset, merging 5 pickle files into one pytorch file
python test/graph_data.py --dataset data/TTbar_14TeV_TuneCUETP8M1_cfi --num-files-merge 5
```
### Software setup
The software setup for the ML training is available in the singularity spec file [scripts/base.singularity](scripts/base.singularity).

## Acknowledgements

Part of this work was conducted at **iBanks**, the AI GPU cluster at Caltech. We acknowledge NVIDIA, SuperMicro and the Kavli Foundation for their support of **iBanks**.
This project is supported by the Mobilitas Pluss Returning Researcher Grant MOBTP187 of the Estonian Research Council. Part of this work was conducted at **iBanks**, the AI GPU cluster at Caltech. We acknowledge NVIDIA, SuperMicro and the Kavli Foundation for their support of **iBanks**.
37 changes: 37 additions & 0 deletions README_cms.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
## Presentations

- CMS ML Forum, 2020-09-30: https://indico.cern.ch/event/952419/contributions/4041555/attachments/2113070/3554608/2020_09_30.pdf
- CMS ML Town Hall, 2020-07-03: https://indico.cern.ch/event/922319/contributions/3928284/attachments/2068518/3472668/2020_07_02.pdf
- FastML meeting, 2020-05-29: https://indico.cern.ch/event/923986/contributions/3883991/attachments/2047940/3431648/2020_05_28.pdf
- CMS PF group, 2020-05-22: https://indico.cern.ch/event/921949/contributions/3873351/attachments/2042984/3422056/2020_05_22.pdf
- CMS scouting group, 2020-05-15: https://indico.cern.ch/event/894101/contributions/3862093/attachments/2038019/3412747/2020_05_13.pdf
- CMS PF group, 2020-04-24: https://indico.cern.ch/event/912351/contributions/3839281/attachments/2026117/3389540/2020_04_24.pdf
- Caltech CMS group ML meeting, 2020-04-16: https://indico.cern.ch/event/909688/contributions/3826957/attachments/2021475/3380133/2020_04_15_caltechml.pdf
- ML4RECO meeting, 2020-04-09: https://indico.cern.ch/event/908361/contributions/3821957/attachments/2017888/3373038/2020_04_08.pdf
- CMS PF group, 2020-03-13: https://indico.cern.ch/event/897397/contributions/3786360/attachments/2003108/3344534/2020_03_13.pdf
- ML4RECO meeting, 2020-03-12: https://indico.cern.ch/event/897281/contributions/3784715/attachments/2002839/3343921/2020_03_12.pdf
- ML4RECO meeting, 2020-03-04: https://indico.cern.ch/event/895228/contributions/3776739/attachments/1998928/3335497/2020_03_04.pdf
- CMS PF group, 2020-02-28: https://indico.cern.ch/event/892992/contributions/3766807/attachments/1995348/3328771/2020_02_28.pdf
- CMS PF group, 2020-01-31: https://indico.cern.ch/event/885043/contributions/3730304/attachments/1979098/3295074/2020_01_30_pf.pdf
- FNAL HGCAL ML meeting, 2020-01-30: https://indico.cern.ch/event/884801/contributions/3730336/attachments/1978912/3294638/2020_01_30.pdf
- Caltech group meeting, 2020-01-28: https://indico.cern.ch/event/881683/contributions/3714961/attachments/1977131/3291096/2020_01_21.pdf
- CMS PF group, 2020-01-17: https://indico.cern.ch/event/862200/contributions/3706909/attachments/1971145/3279010/2020_01_16.pdf
- CMS PF group, 2019-11-22: https://indico.cern.ch/event/862195/contributions/3649510/attachments/1949957/3236487/2019_11_22.pdf
- CMS PF group, 2019-11-08: https://indico.cern.ch/event/861409/contributions/3632204/attachments/1941376/3219105/2019_11_08.pdf
- Caltech ML meeting, 2019-10-31: https://indico.cern.ch/event/858644/contributions/3623446/attachments/1936711/3209684/2019_10_07_pf.pdf
- Caltech ML meeting, 2019-09-19: https://indico.cern.ch/event/849944/contributions/3572113/attachments/1911520/3158764/2019_09_18_pf_ml.pdf
- CMS PF group, 2019-09-10: https://indico.cern.ch/event/846887/contributions/3557300/attachments/1904664/3145310/2019_09_10_pf_refactoring.pdf
- Caltech ML meeting, 2019-09-05: https://indico.cern.ch/event/845349/contributions/3554787/attachments/1902837/3141723/2019_09_05_pfalgo.pdf

In case the above links do not load, the presentations are also mirrored on the following CERNBox link: https://cernbox.cern.ch/index.php/s/GkIRJU1YZuai4ix

# CMS training

```
#get the code
git clone https://github.com/jpata/particleflow.git
cd particleflow
#run a small local test including data prep and training
./scripts/local_test_cms_tf.sh
```
53 changes: 53 additions & 0 deletions README_delphes.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
## Delphes dataset and training

The following instructions use singularity, but you may have a different local setup.

```bash
cd delphes

# Run the simulation step
# Generate events with pythia, mix them with PU and run a detector simulation using Delphes
singularity exec http://jpata.web.cern.ch/jpata/centos7hepsim.sif ./run_sim.sh

# Run the ntuplization step
# generate X,y input matrices for NN training in out/pythia8_ttbar/*.pkl.bz2
singularity exec http://jpata.web.cern.ch/jpata/centos7hepsim.sif ./run_ntuple.sh

#Alternatively, to skip run_sim.sh and run_ntuple.sh, download everything from https://doi.org/10.5281/zenodo.4452283 and put into out/pythia8_ttbar

#now move the data into the right place
mv out/pythia8_ttbar ../data/
cd ../data/pythia8_ttbar
mkdir raw
mkdir val
mkdir root
mv *.root root/
mb *.promc root/

#these are held out for validation
mv tev14_pythia8_ttbar_9_*.pkl.bz2 val/
mv *.pkl.bz2 raw/
cd ../..

# Generate the TFRecord datasets needed for larger-than-RAM training
singularity exec --nv http://jpata.web.cern.ch/jpata/base.simg python3 mlpf/launcher.py --action data --model-spec parameters/delphes-gnn-skipconn.yaml

# Run the training of the base GNN model using e.g. 5 GPUs in a data-parallel mode
CUDA_VISIBLE_DEVICES=0,1,2,3,4 singularity exec --nv http://jpata.web.cern.ch/jpata/base.simg python3 mlpf/launcher.py --action train --model-spec parameters/delphes-gnn-skipconn.yaml

#Run the validation to produce the predictions file
singularity exec --nv http://jpata.web.cern.ch/jpata/base.simg python3 mlpf/launcher.py --action eval --model-spec parameters/delphes-gnn-skipconn.yaml --weights ./experiments/delphes-gnn-skipconn-*/weights.300-*.hdf5

singularity exec --nv http://jpata.web.cern.ch/jpata/base.simg python3 mlpf/launcher.py --action time --model-spec parameters/delphes-gnn-skipconn.yaml --weights ./experiments/delphes-gnn-skipconn-*/weights.300-*.hdf5
```

## Recipe to prepare Delphes singularity image
NB: The Delphes AngularSmearing module has been modified to correctly take into account the smearing for tracks, see [delphes/install.sh](delphes/install.sh)

```bash
wget http://atlaswww.hep.anl.gov/hepsim/soft/centos7hepsim.img
sudo singularity build --sandbox centos7hepsim.sandbox centos7hepsim.img
sudo singularity exec -B /home --writable centos7hepsim.sandbox ./install.sh
sudo singularity build centos7hepsim.sif centos7hepsim.sandbox
sudo rm -Rf centos7hepsim.sandbox
```
53 changes: 53 additions & 0 deletions delphes/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# S.Chekanov

# define here PYTHIA and HEPMC directories
ifndef PYTHIA8_DIR
$(error PYTHIA8_DIR env variable is not set. Run setup.sh first)
endif


ifndef PROMC
$(error PROMC env variable is not set. Run setup.sh first)
endif

include ${PROMC}/etc/config.mk
include ${ROOTSYS}/etc/Makefile.arch


# Root variables
ROOTCFLAGS = $(shell root-config --nonew --cflags)
ROOTLIBS = $(shell root-config --nonew --libs)
ROOTGTTLIBS = $(shell root-config --nonew --glibs)
CXXFLAGS += $(ROOTCFLAGS)

LIBDIRARCH=lib/
OutPutOpt = -o
LIBS += -L$(PROMC)/lib -lpromc -lprotoc -lprotobuf -lprotobuf-lite -lcbook -lz
LIBS += -L$(PYTHIA8_DIR)/$(LIBDIRARCH) -lpythia8

SOURCE_FILES1 := $(shell ls -1 main.cc)

INCLUDE1=-I./src
INCLUDE2=-I.
INCLUDE3=-I$(PROMC)/include -I$(PROMC)/src
INCLUDE4=-I$(HEPMC)/include
INCLUDE5=-I$(PYTHIA8_DIR)/include


# build object files
objects1 = $(patsubst %.cc,%.o,$(SOURCE_FILES1))


%.o: %.cc
$(CXX) $(OPT) $(CXXFLAGS) $(INCLUDE1) $(INCLUDE2) $(INCLUDE3) $(INCLUDE4) $(INCLUDE5) -o $@ -c $<

Tasks: clean main.exe


LIBOBJS = $(patsubst %.cc,%.o,$(SOURCE_FILES))

main.exe: $(objects1)
$(LD) $(LDFLAGS) $^ $(LIBS) $(OutPutOpt)$@

clean:
@rm -f *.o *~ main.exe src/*.o ; echo "Clear.."
15 changes: 0 additions & 15 deletions delphes/README.md

This file was deleted.

Loading

0 comments on commit 8be4e3a

Please sign in to comment.