Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 0 additions & 5 deletions doubleml/irm/tests/test_iivm.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,8 +150,3 @@ def test_dml_iivm_boot(dml_iivm_fixture):
rtol=1e-9,
atol=1e-4,
)


@pytest.mark.ci
def test_dml_iivm_unifconfset(dml_iivm_fixture):
print(dml_iivm_fixture["uniform_confset"])
67 changes: 67 additions & 0 deletions doubleml/irm/tests/test_iivm_unif_confset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
import numpy as np
import pytest
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LinearRegression, LogisticRegression

import doubleml as dml

np.random.seed(3141)

@pytest.fixture(scope="module")
def true_ATE():
return 0.5

@pytest.fixture(scope="module")
def instrument_size():
return 0.005

@pytest.fixture(scope="module")
def n_samples():
return 1000

@pytest.fixture(scope="module")
def n_simulations():
return 100

@pytest.fixture(scope="module")
def weakiv_data(n_samples, instrument_size, true_ATE):
# Generate data
u = np.random.normal(0, 2, size=n_samples)
X = np.random.normal(0, 1, size=n_samples)
Z = np.random.binomial(1, 0.5, size=n_samples)
A = instrument_size * Z + u # Continuous treatment A
A = np.array(A > 0, dtype=int)
Y = true_ATE * A + np.sign(u) # Outcome Y
return dml.DoubleMLData.from_arrays(x=X, y=Y, d=A, z=Z)


@pytest.fixture(scope="module")
def iivm_obj(weakiv_data):
# Set machine learning methods for m, r & g
learner_g = LinearRegression()
classifier_m = LogisticRegression()
classifier_r = RandomForestClassifier(n_estimators=20, max_depth=5)

# Create DoubleMLIIVM object
obj_dml_data = weakiv_data
dml_iivm_obj = dml.DoubleMLIIVM(obj_dml_data, learner_g, classifier_m, classifier_r)
return dml_iivm_obj


def test_coverage(iivm_obj, true_ATE, n_simulations):
coverage = []
for _ in range(n_simulations):
# Fit the model
iivm_obj.fit()

# Get the confidence set
conf_set = iivm_obj.uniform_confset()

# Check if the true ATE is in the confidence set
ate_in_confset = any(x[0] < true_ATE < x[1] for x in conf_set)
coverage.append(ate_in_confset)

# Calculate the coverage rate
coverage_rate = np.mean(coverage)
assert coverage_rate >= 0.9, f"Coverage rate {coverage_rate} is below 0.9"