Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pull in the changes from #616 that are from #151 #636

Merged
merged 2 commits into from
Feb 22, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 12 additions & 9 deletions Paper.tex
Original file line number Diff line number Diff line change
Expand Up @@ -959,24 +959,27 @@ \subsubsection{Machine State}
\subsubsection{Exceptional Halting}\hypertarget{Exceptional_Halting_function_Z}{}\linkdest{zhalt}

The exceptional halting function $Z$ is defined as:
\begin{equation}
\begin{equation}
Z(\boldsymbol{\sigma}, \boldsymbol{\mu}, I) \equiv
\begin{array}[t]{l}
\boldsymbol{\mu}_{\mathrm{g}} < C(\boldsymbol{\sigma}, \boldsymbol{\mu}, I) \quad \vee \\
\mathbf{\delta}_{w} = \varnothing \quad \vee \\
\lVert\boldsymbol{\mu}_{\mathbf{s}}\rVert < \mathbf{\delta}_{w} \quad \vee \\
( w \in \{ \text{\small JUMP}, \text{\small JUMPI} \} \quad \wedge \\ \quad \boldsymbol{\mu}_{\mathbf{s}}[0] \notin D(I_{\mathbf{b}}) ) \quad \vee \\
\boldsymbol{\mu}_g < C(\boldsymbol{\sigma}, \boldsymbol{\mu}, I) \quad \vee \\
\mathbf{\delta}_w = \varnothing \quad \vee \\
\lVert\boldsymbol{\mu}_\mathbf{s}\rVert < \mathbf{\delta}_w \quad \vee \\
( w = \text{\small JUMP} \quad \wedge \quad \boldsymbol{\mu}_\mathbf{s}[0] \notin D(I_\mathbf{b}) ) \quad \vee \\
( w = \text{\small JUMPI} \quad \wedge \quad \boldsymbol{\mu}_\mathbf{s}[1] \neq 0 \quad \wedge \\
\quad \boldsymbol{\mu}_\mathbf{s}[0] \notin D(I_\mathbf{b}) ) \quad \vee \\
( w = \text{\small RETURNDATACOPY} \wedge \\ \quad \boldsymbol{\mu}_{\mathbf{s}}[1] + \boldsymbol{\mu}_{\mathbf{s}}[2] > \lVert\boldsymbol{\mu}_{\mathbf{o}}\rVert) \quad \vee \\
\lVert\boldsymbol{\mu}_{\mathbf{s}}\rVert - \mathbf{\delta}_{w} + \mathbf{\alpha}_{w} > 1024 \quad \vee \\
\lVert\boldsymbol{\mu}_\mathbf{s}\rVert - \mathbf{\delta}_w + \mathbf{\alpha}_w > 1024
\neg I_{\mathrm{w}} \wedge W(w, \boldsymbol{\mu})
\end{array}
\end{equation}
where
\begin{equation}
W(w, \boldsymbol{\mu}) \equiv \begin{array}[t]{l}
w \in \{\text{\small CREATE}, \text{\small SSTORE}, \text{\small SELFDESTRUCT}\} \quad \vee \\
\text{\small LOG0} \le w \wedge w \le \text{\small LOG4} \quad \vee \\
w \in \{\text{\small CALL}, \text{\small CALLCODE}\} \wedge \boldsymbol{\mu}_{\mathbf{s}}[2] \neq 0
w \in \{\text{\small CREATE}, \, \text{\small SSTORE}, \\
\text{\small SELFDESTRUCT}\} \quad \vee \\
(\text{\small LOG0} \le w \wedge w \le \text{\small LOG4}) \quad \vee \\
(w \in \{\text{\small CALL}, \text{\small CALLCODE}\} \wedge \boldsymbol{\mu}_{\mathbf{s}}[2] \neq 0)
\end{array}
\end{equation}

Expand Down