Skip to content

Commit

Permalink
Improvements for solver.System (#887)
Browse files Browse the repository at this point in the history
  • Loading branch information
gertjanvanzwieten committed Oct 23, 2024
2 parents c877329 + 0d4dbad commit 69fb326
Show file tree
Hide file tree
Showing 15 changed files with 234 additions and 61 deletions.
8 changes: 6 additions & 2 deletions .github/workflows/release.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,14 @@ jobs:
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install dependencies
run: python3 -m pip --break-system-packages install flit
run: python -um pip install flit
- name: Build package
run: python3 -m flit build
run: python -um flit build
- name: Publish package to PyPI
uses: pypa/gh-action-pypi-publish@v1.1.0
with:
Expand Down
18 changes: 13 additions & 5 deletions .github/workflows/test.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -19,15 +19,19 @@ jobs:
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install build dependencies
run: python3 -m pip install --break-system-packages flit
run: python -um pip install flit
- name: Build package
id: build
run: |
# To make the wheels reproducible, set the timestamp of the (files in
# the) generated wheels to the date of the commit.
export SOURCE_DATE_EPOCH=`git show -s --format=%ct`
python3 -m flit build
python -um flit build
echo wheel=`echo dist/*.whl` >> $GITHUB_OUTPUT
- name: Upload package artifacts
uses: actions/upload-artifact@v4
Expand Down Expand Up @@ -181,12 +185,16 @@ jobs:
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install dependencies
run: |
python3 -um pip install --break-system-packages setuptools wheel
python3 -um pip install --break-system-packages --upgrade --upgrade-strategy eager .[docs]
python -um pip install setuptools wheel
python -um pip install --upgrade --upgrade-strategy eager .[docs]
- name: Build docs
run: python3 -m sphinx -n -W --keep-going docs build/sphinx/html
run: python -um sphinx -n -W --keep-going docs build/sphinx/html
build-and-test-container-image:
name: Build container image
needs: build-python-package
Expand Down
4 changes: 2 additions & 2 deletions examples/adaptivity.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,10 +69,10 @@ def main(etype: str = 'square',
ns.du = 'u - uexact'

sqr = domain.boundary['corner'].integral('u^2 dS' @ ns, degree=degree*2)
cons = System(sqr, trial='u').optimize(droptol=1e-15)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15)

sqr = domain.boundary.integral('du^2 dS' @ ns, degree=7)
cons = System(sqr, trial='u').optimize(droptol=1e-15, constrain=cons)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15, constrain=cons)

res = domain.integral('∇_k(v) ∇_k(u) dV' @ ns, degree=degree*2)
args = System(res, trial='u', test='v').solve(constrain=cons)
Expand Down
2 changes: 1 addition & 1 deletion examples/cahnhilliard.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ def main(size: Length = parse('10cm'),
For this reason, the `stab` enum in this script defines the stabilizing term
`δψ`, rather than `f`, allowing Nutils to construct the residuals through
automatic differentiation using the `optimize` method.
symbolic differentiation.
Parameters
----------
Expand Down
2 changes: 1 addition & 1 deletion examples/cylinderflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def main(nelems: int = 99,
ns.uwall_i = 'rotation ε_ij x_j' # clockwise positive rotation

sqr = domain.boundary['inflow'].integral('Σ_i (u_i - uinf_i)^2 dS' @ ns, degree=degree*2)
cons = System(sqr, trial='u').optimize(droptol=1e-15) # constrain inflow boundary to unit horizontal flow
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15) # constrain inflow boundary to unit horizontal flow

sqr = domain.integral('(.5 Σ_i (u_i - uinf_i)^2 - ∇_k(u_k) p) dV' @ ns, degree=degree*2)
args = System(sqr, trial='u,p').solve(constrain=cons) # set initial condition to potential flow
Expand Down
4 changes: 2 additions & 2 deletions examples/drivencavity.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,12 +118,12 @@ def main(nelems: int = 32,

# strong enforcement of non-penetrating boundary conditions
sqr = domain.boundary.integral('(u_k n_k)^2 dS' @ ns, degree=degree*2)
cons = System(sqr, trial='u').optimize(droptol=1e-15)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15)

if strongbc:
# strong enforcement of tangential boundary conditions
sqr = domain.boundary.integral('(ε_ij n_i (u_j - uwall_j))^2 dS' @ ns, degree=degree*2)
tcons = System(sqr, trial='u').optimize(droptol=1e-15)
tcons = System(sqr, trial='u').solve_constraints(droptol=1e-15)
cons['u'] = numpy.choose(numpy.isnan(cons['u']), [cons['u'], tcons['u']])
else:
# weak enforcement of tangential boundary conditions via Nitsche's method
Expand Down
2 changes: 1 addition & 1 deletion examples/elasticity.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ def main(nelems: int = 24,
ns.q_i = '-δ_i1'

sqr = domain.boundary['top'].integral('u_k u_k dS' @ ns, degree=degree*2)
cons = System(sqr, trial='u').optimize(droptol=1e-15)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15)

# solve for equilibrium configuration
energy = domain.integral('(E - u_i q_i) dV' @ ns, degree=degree*2)
Expand Down
2 changes: 1 addition & 1 deletion examples/finitestrain.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def main(nelems: int = 20,

sqr = domain.boundary['left'].integral('u_k u_k dS' @ ns, degree=degree*2)
sqr += domain.boundary['right'].integral('((u_0 - X_1 sin(2 angle) - cos(angle) + 1)^2 + (u_1 - X_1 (cos(2 angle) - 1) + sin(angle))^2) dS' @ ns, degree=degree*2)
cons = System(sqr, trial='u').optimize(droptol=1e-15)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15)

energy = domain.integral('energy dV' @ ns, degree=degree*2)
args0 = System(energy, trial='u').solve(constrain=cons)
Expand Down
2 changes: 1 addition & 1 deletion examples/laplace.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def main(nelems: int = 10,

sqr = domain.boundary['left'].integral('u^2 dS' @ ns, degree=degree*2)
sqr += domain.boundary['top'].integral('(u - cosh(1) sin(x_0))^2 dS' @ ns, degree=degree*2)
cons = System(sqr, trial='u').optimize(droptol=1e-15)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15)

# The unconstrained entries of `u` are to be such that the residual
# evaluates to zero for all possible values of `v`. The resulting array `u`
Expand Down
4 changes: 2 additions & 2 deletions examples/platewithhole.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,10 +137,10 @@ def main(mode: Union[FCM, NURBS] = NURBS(),
log.info('hole radius exact up to L2 error {:.2e}'.format(radiuserr))

sqr = topo.boundary['sym'].integral('(u_i n_i)^2 dS' @ ns, degree=degree*2)
cons = System(sqr, trial='u').optimize(droptol=1e-15)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15)

sqr = topo.boundary['far'].integral('du_k du_k dS' @ ns, degree=20)
cons = System(sqr, trial='u').optimize(droptol=1e-15, constrain=cons)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-15, constrain=cons)

res = topo.integral('∇_j(v_i) σ_ij dV' @ ns, degree=degree*2)
args = System(res, trial='u', test='v').solve(constrain=cons)
Expand Down
2 changes: 1 addition & 1 deletion examples/poisson.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def main(nelems: int = 32):
J = function.J(x)

sqr = topo.boundary.integral(u**2 * J, degree=2)
cons = System(sqr, trial='u').optimize(droptol=1e-12)
cons = System(sqr, trial='u').solve_constraints(droptol=1e-12)

energy = topo.integral((g @ g / 2 - u) * J, degree=1)
args = System(energy, trial='u').solve(constrain=cons)
Expand Down
2 changes: 1 addition & 1 deletion nutils/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
'Numerical Utilities for Finite Element Analysis'

__version__ = version = '9a37'
__version__ = version = '9a38'
version_name = 'jook-sing'
34 changes: 23 additions & 11 deletions nutils/evaluable.py
Original file line number Diff line number Diff line change
Expand Up @@ -691,16 +691,21 @@ def _compile_with_out(self, builder, out, out_block_id, mode):
return NotImplemented


def assert_equal(a, b):
return a if a == b else AssertEqual(a, b)


def assert_equal_tuple(A, B):
assert len(A) == len(B)
return tuple(map(assert_equal, A, B))


class AssertEqual(Array):
'Confirm arrays equality at runtime'

a: Array
b: Array

@classmethod
def map(cls, A, B):
return tuple(map(cls, A, B))

def __post_init__(self):
assert not _certainly_different(self.a, self.b)

Expand All @@ -710,16 +715,23 @@ def dtype(self):

@cached_property
def shape(self):
return self.map(self.a.shape, self.b.shape)
return assert_equal_tuple(self.a.shape, self.b.shape)

def _intbounds_impl(self):
lowera, uppera = self.a._intbounds_impl()
lowerb, upperb = self.b._intbounds_impl()
return max(lowera, lowerb), min(uppera, upperb)

def _simplified(self):
if self.a == self.b:
return self.a
unique = []
queue = [self.a, self.b]
for item in queue:
if isinstance(item, AssertEqual):
queue.append(item.a)
queue.append(item.b)
elif item not in unique:
unique.append(item)
return functools.reduce(AssertEqual, unique)

@property
def dependencies(self):
Expand Down Expand Up @@ -1442,7 +1454,7 @@ def dtype(self):
@cached_property
def shape(self):
func1, func2 = self.funcs
return AssertEqual.map(func1.shape, func2.shape)
return assert_equal_tuple(func1.shape, func2.shape)

@property
def _factors(self):
Expand Down Expand Up @@ -1629,7 +1641,7 @@ def dtype(self):
@cached_property
def shape(self):
func1, func2 = self.funcs
return AssertEqual.map(func1.shape, func2.shape)
return assert_equal_tuple(func1.shape, func2.shape)

@cached_property
def _inflations(self):
Expand Down Expand Up @@ -1775,7 +1787,7 @@ def __post_init__(self):
for idx, arg in zip(self.args_idx, self.args):
for i, length in zip(idx, arg.shape):
n = lengths.get(i)
lengths[i] = length if n is None else AssertEqual(length, n)
lengths[i] = length if n is None else assert_equal(length, n)
try:
self.shape = tuple(lengths[i] for i in self.out_idx)
except KeyError(e):
Expand Down Expand Up @@ -2101,7 +2113,7 @@ class Pointwise(Array):
def __post_init__(self):
self.shape = self.dependencies[0].shape
for dep in self.dependencies[1:]:
self.shape = AssertEqual.map(self.shape, dep.shape)
self.shape = assert_equal_tuple(self.shape, dep.shape)

def _newargs(self, *args):
'''
Expand Down
90 changes: 60 additions & 30 deletions nutils/solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,29 +237,47 @@ def __init__(self, residual: Union[evaluable.AsEvaluableArray,Tuple[evaluable.As
self.trialshapes = dict(zip(self.trials, evaluable.compile(tuple(argobjects[t].shape for t in self.trials))()))
self.__trial_offsets = numpy.cumsum([0] + [numpy.prod(self.trialshapes[t], dtype=int) for t in self.trials])

value = functional if self.is_symmetric else evaluable.constant(numpy.nan)
value = functional if self.is_symmetric else ()
block_vector = [evaluable._flat(res) for res in residuals]
block_matrix = [[evaluable._flat(evaluable.derivative(res, argobjects[t]).simplified, 2) for t in self.trials] for res in block_vector]
self.__eval = evaluable.compile((tuple(tuple(map(evaluable.as_csr, row)) for row in block_matrix), tuple(block_vector), value))

self.is_linear = not any(arg.name in self.trials for row in block_matrix for col in row for arg in col.arguments)
self.is_constant = self.is_linear and not any(col.arguments for row in block_matrix for col in row)
self.__matrix_cache = None
if self.is_linear:
z = {t: evaluable.zeros_like(argobjects[t]) for t in self.trials}
block_vector = [evaluable.replace_arguments(vector, z).simplified for vector in block_vector]
if self.is_symmetric:
value = evaluable.replace_arguments(value, z).simplified

self.__eval = evaluable.compile((tuple(tuple(map(evaluable.as_csr, row)) for row in block_matrix), tuple(block_vector), value))

self.is_constant_matrix = self.is_linear and not any(col.arguments for row in block_matrix for col in row)
self.is_constant = self.is_constant_matrix and not any(vec.arguments for vec in block_vector) and not (self.is_symmetric and value.arguments)
self.__mat_vec_val = None, None, None

@property
def __nutils_hash__(self):
return self.__eval.__nutils_hash__

@log.withcontext
def assemble(self, arguments: Dict[str, numpy.ndarray]):
mat_blocks, vec_blocks, val = self.__eval(**arguments)
vec = numpy.concatenate(vec_blocks)
if self.__matrix_cache is not None:
mat = self.__matrix_cache
else:
mat = matrix.assemble_block_csr(mat_blocks)
mat, vec, val = self.__mat_vec_val
if vec is None:
mat_blocks, vec_blocks, maybe_val = self.__eval(**arguments)
if mat is None:
mat = matrix.assemble_block_csr(mat_blocks)
vec = numpy.concatenate(vec_blocks)
val = self.dtype(maybe_val) if self.is_symmetric else None
if self.is_constant:
self.__matrix_cache = mat
vec.flags.writeable = False
self.__mat_vec_val = mat, vec, val
elif self.is_constant_matrix:
self.__mat_vec_val = mat, None, None
if self.is_linear:
x = numpy.concatenate([arguments[t].ravel() for t in self.trials])
matx = mat @ x
if self.is_symmetric:
val += vec @ x + .5 * (x @ matx) # val(x) = val(0) + vec(0) x + .5 x mat x
vec = vec + matx # vec(x) = vec(0) + mat x
return mat, vec, val

def prepare_solution_vector(self, arguments: Dict[str, numpy.ndarray], constrain: Dict[str, numpy.ndarray]):
Expand Down Expand Up @@ -389,14 +407,22 @@ def step(self, *, timestep: float, timetarget: str, historysuffix: str, argument

@cache.function
@log.withcontext
def optimize(self, *, droptol: Optional[float], arguments: Dict[str, numpy.ndarray] = {}, constrain: Dict[str, numpy.ndarray] = {}, linargs: Dict[str, Any] = {}) -> Tuple[Dict[str, numpy.ndarray], float]:
'''Optimize singular system.
def solve_constraints(self, *, droptol: Optional[float], arguments: Dict[str, numpy.ndarray] = {}, constrain: Dict[str, numpy.ndarray] = {}, linargs: Dict[str, Any] = {}) -> Tuple[Dict[str, numpy.ndarray], float]:
'''Solve for Dirichlet constraints.
This method is similar to ``solve``, but specific to symmetric linear
systems, with the added ability to solve a limited class of singular
systems. It does so by isolating the subset of arguments that
contribute to the functional and solving the corresponding submatrix.
The remaining argument values are returned as NaN (not a number).
This method is similar to ``solve``, but with two key differences.
The method is limited to linear systems, but adds the ability to solve
a limited class of singular systems. It does so by isolating the subset
of arguments that contribute (up to droptol) to the residual, and
solving the corresponding submatrix. The remaining argument values are
returned as NaN (not a number).
The second key difference with solve is that the returned dictionary
is augmented with the remaining _constrain_ items, rather than those
from _arguments_, reflecting the method's main utility of forming
Dirichlet constraints. This allows for the aggregation of constraints
by calling the method multiple times in series.
Parameters
----------
Expand All @@ -414,19 +440,23 @@ def optimize(self, *, droptol: Optional[float], arguments: Dict[str, numpy.ndarr
participate in the optimization problem.
'''

log.info(f'optimizing for argument {self._trial_info} with drop tolerance {droptol:.0e}')
log.info(f'{"optimizing" if self.is_symmetric else "solving"} for argument {self._trial_info} with drop tolerance {droptol:.0e}')
if not self.is_linear:
raise SolverError('system is not linear')
if not self.is_symmetric:
raise SolverError('system is not symmetric')
raise ValueError('system is not linear')
x, iscons, arguments = self.prepare_solution_vector(arguments, constrain)
jac, res, val = self.assemble(arguments)
nosupp = ~jac.rowsupp(droptol)
dx = -jac.solve(res, constrain=iscons | nosupp, **_copy_with_defaults(linargs, symmetric=self.is_symmetric))
log.info(f'optimal value: {val+.5*(res@dx):.1e}') # val(x + dx) = val(x) + res(x) dx + .5 dx jac dx
data, colidx, _ = jac.export('csr')
mycons = numpy.ones_like(iscons)
mycons[colidx[abs(data) > droptol]] = False # unconstrain dofs with nonzero columns
mycons |= iscons
dx = -jac.solve(res, constrain=mycons, **_copy_with_defaults(linargs, symmetric=self.is_symmetric))
if self.is_symmetric:
log.info(f'optimal value: {val+.5*(res@dx):.1e}') # val(x + dx) = val(x) + res(x) dx + .5 dx jac dx
x += dx
x[nosupp & ~iscons] = numpy.nan
return arguments
for trial, i, j in zip(self.trials, self.__trial_offsets, self.__trial_offsets[1:]):
log.info(f'constrained {j-i-mycons[i:j].sum()} degrees of freedom of {trial}')
x[mycons & ~iscons] = numpy.nan
return dict(constrain, **{t: arguments[t] for t in self.trials})


@dataclass(eq=True, frozen=True)
Expand Down Expand Up @@ -492,11 +522,11 @@ class Minimize:
failrelax: float = -10.

def __str__(self):
return 'newton'
return 'minimize'

def __call__(self, system, *, arguments: Dict[str, numpy.ndarray] = {}, constrain: Dict[str, numpy.ndarray] = {}, linargs: Dict[str, Any] = {}) -> System.MethodIter:
if not system.is_symmetric:
raise SolverError('problem is not symmetric')
raise ValueError('problem is not symmetric')
x, iscons, arguments = system.prepare_solution_vector(arguments, constrain)
jac, res, val = system.assemble(arguments)
linargs = _copy_with_defaults(linargs, rtol=1-3, symmetric=system.is_symmetric)
Expand Down Expand Up @@ -889,7 +919,7 @@ def optimize(target, functional: evaluable.asarray, *, tol: float = 0., argument
raise TypeError('unexpected keyword arguments: {}'.format(', '.join(kwargs)))
system = System(functional, *_split_trial_test(target))
if droptol is not None:
return system.optimize(arguments=arguments, constrain=constrain or {}, linargs=linargs, droptol=droptol)
return system.solve_constraints(arguments=arguments, constrain=constrain or {}, linargs=linargs, droptol=droptol)
method = None if system.is_linear else Newton() if linesearch is None else LinesearchNewton(strategy=linesearch, relax0=relax0, failrelax=failrelax)
return system.solve(arguments=arguments, constrain=constrain or {}, linargs=linargs, method=method, tol=tol)

Expand Down
Loading

0 comments on commit 69fb326

Please sign in to comment.