A Model Context Protocol (MCP) server that provides knowledge graph functionality for managing entities, relations, and observations in memory, with strict validation rules to maintain data consistency.
Install the server in Claude Desktop:
mcp install main.py -v MEMORY_FILE_PATH=/path/to/memory.jsonl
- Must start with a lowercase letter
- Can contain lowercase letters, numbers, and hyphens
- Maximum length of 100 characters
- Must be unique within the graph
- Example valid names:
python-project
,meeting-notes-2024
,user-john
The following entity types are supported:
person
: Human entitiesconcept
: Abstract ideas or principlesproject
: Work initiatives or tasksdocument
: Any form of documentationtool
: Software tools or utilitiesorganization
: Companies or groupslocation
: Physical or virtual placesevent
: Time-bound occurrences
- Non-empty strings
- Maximum length of 500 characters
- Must be unique per entity
- Should be factual and objective statements
- Include timestamp when relevant
The following relation types are supported:
knows
: Person to person connectioncontains
: Parent/child relationshipuses
: Entity utilizing another entitycreated
: Authorship/creation relationshipbelongs-to
: Membership/ownershipdepends-on
: Dependency relationshiprelated-to
: Generic relationship
Additional relation rules:
- Both source and target entities must exist
- Self-referential relations not allowed
- No circular dependencies allowed
- Must use predefined relation types
The server provides tools for managing a knowledge graph:
result = await session.call_tool("get_entity", {
"entity_name": "example"
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
elif result.error_type == "VALIDATION_ERROR":
print(f"Invalid input: {result.error}")
else:
print(f"Error: {result.error}")
else:
entity = result.data
print(f"Found entity: {entity}")
result = await session.call_tool("get_graph", {})
if result.success:
graph = result.data
print(f"Graph data: {graph}")
else:
print(f"Error retrieving graph: {result.error}")
# Valid entity creation
entities = [
Entity(
name="python-project", # Lowercase with hyphens
entityType="project", # Must be a valid type
observations=["Started development on 2024-01-29"]
),
Entity(
name="john-doe",
entityType="person",
observations=["Software engineer", "Joined team in 2024"]
)
]
result = await session.call_tool("create_entities", {
"entities": entities
})
if not result.success:
if result.error_type == "VALIDATION_ERROR":
print(f"Invalid entity data: {result.error}")
else:
print(f"Error creating entities: {result.error}")
# Valid observation
result = await session.call_tool("add_observation", {
"entity": "python-project",
"observation": "Completed initial prototype" # Must be unique for entity
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
elif result.error_type == "VALIDATION_ERROR":
print(f"Invalid observation: {result.error}")
else:
print(f"Error adding observation: {result.error}")
# Valid relation
result = await session.call_tool("create_relation", {
"from_entity": "john-doe",
"to_entity": "python-project",
"relation_type": "created" # Must be a valid type
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
elif result.error_type == "VALIDATION_ERROR":
print(f"Invalid relation data: {result.error}")
else:
print(f"Error creating relation: {result.error}")
result = await session.call_tool("search_memory", {
"query": "most recent workout" # Supports natural language queries
})
if result.success:
if result.error_type == "NO_RESULTS":
print(f"No results found: {result.error}")
else:
results = result.data
print(f"Search results: {results}")
else:
print(f"Error searching memory: {result.error}")
The search functionality supports:
- Temporal queries (e.g., "most recent", "last", "latest")
- Activity queries (e.g., "workout", "exercise")
- General entity searches
- Fuzzy matching with 80% similarity threshold
- Weighted search across:
- Entity names (weight: 1.0)
- Entity types (weight: 0.8)
- Observations (weight: 0.6)
result = await session.call_tool("delete_entities", {
"names": ["python-project", "john-doe"]
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
else:
print(f"Error deleting entities: {result.error}")
result = await session.call_tool("delete_relation", {
"from_entity": "john-doe",
"to_entity": "python-project"
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
else:
print(f"Error deleting relation: {result.error}")
result = await session.call_tool("flush_memory", {})
if not result.success:
print(f"Error flushing memory: {result.error}")
The server uses the following error types:
NOT_FOUND
: Entity or resource not foundVALIDATION_ERROR
: Invalid input dataINTERNAL_ERROR
: Server-side errorALREADY_EXISTS
: Resource already existsINVALID_RELATION
: Invalid relation between entities
All tools return typed responses using these models:
class EntityResponse(BaseModel):
success: bool
data: Optional[Dict[str, Any]] = None
error: Optional[str] = None
error_type: Optional[str] = None
class GraphResponse(BaseModel):
success: bool
data: Optional[Dict[str, Any]] = None
error: Optional[str] = None
error_type: Optional[str] = None
class OperationResponse(BaseModel):
success: bool
error: Optional[str] = None
error_type: Optional[str] = None
pytest tests/
- Update validation rules in
validation.py
- Add tests in
tests/test_validation.py
- Implement changes in
knowledge_graph_manager.py