Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

EFRS-1114: Google Coral Support for FaceNet  #580

Open
wants to merge 17 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/unit-tests-on-python.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ jobs:
sudo apt-get update && sudo apt-get install -y libjpeg-dev libpng-dev \
libtiff-dev libavformat-dev libpq-dev libfreeimage3
python -m pip install --upgrade pip
python -m pip --no-cache-dir install -r requirements.txt
python -m pip --no-cache-dir install -r requirements.txt -e srcext/mtcnn_tflite/
python -m src.services.facescan.plugins.setup
- name: Test with pytest
working-directory: ./embedding-calculator/
Expand Down
2 changes: 1 addition & 1 deletion embedding-calculator/src/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ class ENV(Constants):

FACE_DETECTION_PLUGIN = get_env('FACE_DETECTION_PLUGIN', 'facenet.FaceDetector')
CALCULATION_PLUGIN = get_env('CALCULATION_PLUGIN', 'facenet.Calculator')
EXTRA_PLUGINS = get_env_split('EXTRA_PLUGINS', 'facenet.LandmarksDetector,agegender.AgeDetector,agegender.GenderDetector,facenet.facemask.MaskDetector')
EXTRA_PLUGINS = get_env_split('EXTRA_PLUGINS', 'facenet.LandmarksDetector,agegender.AgeDetector,agegender.GenderDetector,facenet.facemask.MaskDetector,facenet.coralmtcnn.FaceDetector,facenet.coralmtcnn.Calculator')

LOGGING_LEVEL_NAME = get_env('LOGGING_LEVEL_NAME', 'debug').upper()
IS_DEV_ENV = get_env('FLASK_ENV', 'production') == 'development'
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied. See the License for the specific language governing
# permissions and limitations under the License.

from src.services.facescan.plugins.dependencies import get_tensorflow

requirements = get_tensorflow()
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
# Copyright (c) 2020 the original author or authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied. See the License for the specific language governing
# permissions and limitations under the License.

import logging
import math
import cv2
from typing import List

import tensorflow as tf
import numpy as np
from cached_property import cached_property
from mtcnn_tflite.MTCNN import MTCNN

from src.constants import ENV
from src.services.dto.bounding_box import BoundingBoxDTO
from src.services.facescan.plugins import mixins
from src.services.facescan.imgscaler.imgscaler import ImgScaler
from src.services.imgtools.proc_img import crop_img, squish_img
from src.services.imgtools.types import Array3D
from src.services.utils.pyutils import get_current_dir

from src.services.facescan.plugins import base

CURRENT_DIR = get_current_dir(__file__)
logger = logging.getLogger(__name__)

def prewhiten(img):
""" Normalize image."""
mean = np.mean(img)
std = np.std(img)
std_adj = np.maximum(std, 1.0 / np.sqrt(img.size))
y = np.multiply(np.subtract(img, mean), 1 / std_adj)
return y

class FaceDetector(mixins.FaceDetectorMixin, base.BasePlugin):
FACE_MIN_SIZE = 20
SCALE_FACTOR = 0.709
BOX_MARGIN = 32
IMAGE_SIZE = 160
IMG_LENGTH_LIMIT = ENV.IMG_LENGTH_LIMIT

# detection settings
det_prob_threshold = 0.85
det_threshold_a = 0.9436513301
det_threshold_b = 0.7059968943
det_threshold_c = 0.5506904359

@cached_property
def _face_detection_net(self):
return MTCNN(
min_face_size=self.FACE_MIN_SIZE,
scale_factor=self.SCALE_FACTOR,
steps_threshold=[self.det_threshold_a, self.det_threshold_b, self.det_threshold_c]
)

def crop_face(self, img: Array3D, box: BoundingBoxDTO) -> Array3D:
return cv2.resize(crop_img(img, box), (self.IMAGE_SIZE, self.IMAGE_SIZE))

def find_faces(self, img: Array3D, det_prob_threshold: float = None) -> List[BoundingBoxDTO]:
if det_prob_threshold is None:
det_prob_threshold = self.det_prob_threshold
assert 0 <= det_prob_threshold <= 1
scaler = ImgScaler(self.IMG_LENGTH_LIMIT)
img = scaler.downscale_img(img)

fdn = self._face_detection_net
detect_face_result = fdn.detect_faces(img)
img_size = np.asarray(img.shape)[0:2]
bounding_boxes = []

for face in detect_face_result:
x, y, w, h = face['box']
margin_x = w / 8
margin_y = h / 8
box = BoundingBoxDTO(
x_min=int(np.maximum(x - margin_x, 0)),
y_min=int(np.maximum(y - margin_y, 0)),
x_max=int(np.minimum(x + w + margin_x, img_size[1])),
y_max=int(np.minimum(y + h + margin_y, img_size[0])),
np_landmarks=np.array([list(value) for value in face['keypoints'].values()]),
probability=face['confidence']
)
logger.debug(f"Found: {box}")
bounding_boxes.append(box)

filtered_bounding_boxes = []
for box in bounding_boxes:
box = box.scaled(scaler.upscale_coefficient)
if box.probability <= det_prob_threshold:
logger.debug(f'Box filtered out because below threshold ({det_prob_threshold}): {box}')
continue
filtered_bounding_boxes.append(box)
return filtered_bounding_boxes


class Calculator(mixins.CalculatorMixin, base.BasePlugin):
ml_models = (
# converted facenet .tflite model
('20180402-114759-edgetpu', '1Uwv8w6Uj5M_xdJI9sjay_wkoFoI_zbjk', (1.1817961, 5.291995557), 0.4),
)
BATCH_SIZE = 25
DELIGATES = 'libedgetpu.so.1'

@property
def ml_model_file(self):
return str(self.ml_model.path / f'{self.ml_model.name}.tflite')

@cached_property
def _embedding_calculator_tpu(self):
delegate_list = tf.lite.experimental.load_delegate(self.DELIGATES)
model = tf.lite.Interpreter(
model_path=self.ml_model_file,
experimental_delegates=[delegate_list])
return model

@cached_property
def _embedding_calculator(self):
model = tf.lite.Interpreter(model_path=self.ml_model_file)
return model

def calc_embedding(self, face_img: Array3D, mode='CPU') -> Array3D:
return self._calculate_embeddings([face_img], mode)[0]

def _calculate_embeddings(self, cropped_images, mode='CPU'):
"""Run forward pass to calculate embeddings"""
if mode == 'TPU':
calc_model = self._embedding_calculator_tpu
else:
calc_model = self._embedding_calculator
cropped_images = [prewhiten(img).astype(np.float32) for img in cropped_images]

input_details = calc_model.get_input_details()
input_index = input_details[0]['index']
input_shape = input_details[0]['shape']
input_size = tuple(input_shape[1:4])

output_details = calc_model.get_output_details()
output_index = output_details[0]['index']
embedding_size = output_details[0]['shape'][1]

image_count = len(cropped_images)
batches_per_epoch = int(math.ceil(1.0 * image_count / self.BATCH_SIZE))
embeddings = np.zeros((image_count, embedding_size))
preprocessed_images = np.array([img for img in cropped_images])

for i in range(batches_per_epoch):
start_index = i * self.BATCH_SIZE
end_index = min((i + 1) * self.BATCH_SIZE, image_count)
calc_model.resize_tensor_input(input_index, (end_index-start_index, input_size[0], input_size[1], input_size[2]))
calc_model.resize_tensor_input(output_index, (end_index-start_index, embedding_size))
calc_model.allocate_tensors()
calc_model.set_tensor(input_index, preprocessed_images[start_index:end_index])
calc_model.invoke()
embeddings[start_index:end_index, :] = calc_model.get_tensor(output_index)
return embeddings


class LandmarksDetector(mixins.LandmarksDetectorMixin, base.BasePlugin):
""" Extract landmarks from FaceDetector results."""
22 changes: 22 additions & 0 deletions embedding-calculator/srcext/mtcnn_tflite/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
MIT License

Copyright (c) 2019 Iván de Paz Centeno
Copyright (c) 2021 CDL Digidow <https://www.digidow.eu>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
1 change: 1 addition & 0 deletions embedding-calculator/srcext/mtcnn_tflite/MANIFEST.in
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
include mtcnn_tflite/data/mtcnn_weights.npy
51 changes: 51 additions & 0 deletions embedding-calculator/srcext/mtcnn_tflite/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# MTCNN face recognition

Implementation of the [MTCNN face detection algorithm](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7553523). This project converted the code from [ipazc/mtcnn](https://github.com/ipazc/mtcnn) to TF Lite.

## Installation

You can install the package through pip:

```
pip install mtcnn-tflite
```

## Quick start

Similar to [the original implementation](https://github.com/ipazc/mtcnn), the following example illustrates the ease of use of this package:

```
>>> from mtcnn_tflite.MTCNN import MTCNN
>>> import cv2
>>>
>>> img = cv2.cvtColor(cv2.imread("ivan.jpg"), cv2.COLOR_BGR2RGB)
>>> detector = MTCNN()
>>> detector.detect_faces(img)
[
{
'box': [276, 88, 51, 68],
'confidence': 0.9989245533943176,
'keypoints': {
'left_eye': (291, 117),
'right_eye': (314, 114),
'nose': (303, 130),
'mouth_left': (296, 143),
'mouth_right': (314, 141)
}
}
]
```


## Benchmark

| Image size | TF version | Process time * |
|------------|---------------------------------------|----------------|
| 561x561 | [TF2](https://github.com/ipazc/mtcnn) | 698ms |
| 561x561 | **This repository** (TF Lite) | 445ms |

\* executed on a CPU: Intel i7-10510U

## License

[MIT License](https://github.com/mobilesec/mtcnn-tflite/blob/master/LICENSE)
Loading