Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ADD] Implement shape of a structured matrix #81

Merged
merged 3 commits into from
Nov 4, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion singd/optim/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -499,7 +499,7 @@ def _update_preconditioner(self, module: Module):
# in `m_K, m_C`
scale = 0.5 * (1.0 - alpha1 if normalize_lr_cov else 1.0)

dim_K, dim_C = self.preconditioner_dims(module)
(dim_K,), (dim_C,) = set(K.shape), set(C.shape)
(dtype_K, dtype_C), dev = self._get_preconditioner_dtypes_and_device(module)

# step for m_K
Expand Down
12 changes: 11 additions & 1 deletion singd/structures/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

import torch
import torch.distributed as dist
from torch import Tensor, zeros
from torch import Size, Tensor, zeros
from torch.linalg import matrix_norm

from singd.structures.utils import diag_add_, supported_eye
Expand Down Expand Up @@ -82,6 +82,16 @@ def named_tensors(self) -> Iterator[Tuple[str, Tensor]]:
for name in self._tensor_names:
yield name, getattr(self, name)

@property
def shape(self) -> Size:
"""Return the structured matrix's shape.

Returns:
The shape of the matrix.
"""
self._warn_naive_implementation("shape")
return self.to_dense().shape

def __matmul__(
self, other: Union[StructuredMatrix, Tensor]
) -> Union[StructuredMatrix, Tensor]:
Expand Down
18 changes: 17 additions & 1 deletion singd/structures/blockdiagonal.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

import torch
from einops import rearrange
from torch import Tensor, arange, cat, einsum, zeros
from torch import Size, Tensor, arange, cat, einsum, zeros
from torch.linalg import vector_norm

from singd.structures.base import StructuredMatrix
Expand Down Expand Up @@ -109,6 +109,22 @@ def __init__(self, blocks: Tensor, last: Tensor) -> None:
self._last: Tensor
self.register_tensor(last, "_last")

@property
def shape(self) -> Size:
"""Return the structured matrix's shape.

Returns:
The shape of the matrix.
"""
num_blocks, _, _ = self._blocks.shape
last_rows, last_cols = self._last.shape
return Size(
(
num_blocks * self.BLOCK_DIM + last_rows,
num_blocks * self.BLOCK_DIM + last_cols,
)
)

@classmethod
def from_dense(cls, mat: Tensor) -> BlockDiagonalMatrixTemplate:
"""Construct from a PyTorch tensor.
Expand Down
11 changes: 10 additions & 1 deletion singd/structures/diagonal.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from typing import Union

import torch
from torch import Tensor, einsum, ones, zeros
from torch import Size, Tensor, einsum, ones, zeros
from torch.linalg import vector_norm

from singd.structures.base import StructuredMatrix
Expand Down Expand Up @@ -47,6 +47,15 @@ def __init__(self, mat_diag: Tensor) -> None:
self._mat_diag: Tensor
self.register_tensor(mat_diag, "_mat_diag")

@property
def shape(self) -> Size:
"""Return the structured matrix's shape.

Returns:
The shape of the matrix.
"""
return self._mat_diag.shape + self._mat_diag.shape

def __matmul__(
self, other: Union[DiagonalMatrix, Tensor]
) -> Union[DiagonalMatrix, Tensor]:
Expand Down
11 changes: 10 additions & 1 deletion singd/structures/hierarchical.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from typing import Tuple, Union

import torch
from torch import Tensor, arange, cat, einsum, ones, zeros
from torch import Size, Tensor, arange, cat, einsum, ones, zeros
from torch.linalg import vector_norm

from singd.structures.base import StructuredMatrix
Expand Down Expand Up @@ -142,6 +142,15 @@ def __init__(self, A: Tensor, B: Tensor, C: Tensor, D: Tensor, E: Tensor):
self.E: Tensor
self.register_tensor(E, "E")

@property
def shape(self) -> Size:
"""Return the structured matrix's shape.

Returns:
The shape of the matrix.
"""
return Size((self.dim, self.dim))

@classmethod
def from_dense(cls, sym_mat: Tensor) -> HierarchicalMatrixTemplate:
"""Construct from a PyTorch tensor.
Expand Down
24 changes: 23 additions & 1 deletion singd/structures/recursive.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

from typing import Iterator, List, Tuple, Type, Union

from torch import Tensor, block_diag
from torch import Size, Tensor, block_diag

from singd.structures.base import StructuredMatrix

Expand Down Expand Up @@ -184,6 +184,17 @@ def __init__(self, A: StructuredMatrix, B: Tensor, C: StructuredMatrix):
self.C: StructuredMatrix
self.register_substructure(C, "C")

@property
def shape(self) -> Size:
f-dangel marked this conversation as resolved.
Show resolved Hide resolved
"""Return the structured matrix's shape.

Returns:
The shape of the matrix.
"""
A_rows, A_cols = self.A.shape
C_rows, C_cols = self.C.shape
return Size((A_rows + C_rows, A_cols + C_cols))

@classmethod
def from_dense(cls, sym_mat: Tensor) -> RecursiveTopRightMatrixTemplate:
"""Construct from a PyTorch tensor.
Expand Down Expand Up @@ -322,6 +333,17 @@ def __init__(self, A: StructuredMatrix, B: Tensor, C: StructuredMatrix):
self.C: StructuredMatrix
self.register_substructure(C, "C")

@property
def shape(self) -> Size:
"""Return the structured matrix's shape.

Returns:
The shape of the matrix.
"""
A_rows, A_cols = self.A.shape
C_rows, C_cols = self.C.shape
return Size((A_rows + C_rows, A_cols + C_cols))

@classmethod
def from_dense(cls, sym_mat: Tensor) -> RecursiveBottomLeftMatrixTemplate:
"""Construct from a PyTorch tensor.
Expand Down
11 changes: 10 additions & 1 deletion singd/structures/triltoeplitz.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from typing import Union

import torch
from torch import Tensor, arange, cat, zeros
from torch import Size, Tensor, arange, cat, zeros
from torch.linalg import vector_norm
from torch.nn.functional import conv1d, pad

Expand Down Expand Up @@ -55,6 +55,15 @@ def __init__(self, lower_diags: Tensor) -> None:
self._lower_diags: Tensor
self.register_tensor(lower_diags, "_lower_diags")

@property
def shape(self) -> Size:
"""Return the structured matrix's shape.

Returns:
The shape of the matrix.
"""
return self._lower_diags.shape + self._lower_diags.shape

@classmethod
def from_dense(cls, mat: Tensor) -> TrilToeplitzMatrix:
"""Construct from a PyTorch tensor.
Expand Down
11 changes: 10 additions & 1 deletion singd/structures/triutoeplitz.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from typing import Union

import torch
from torch import Tensor, arange, cat, triu_indices, zeros
from torch import Size, Tensor, arange, cat, triu_indices, zeros
from torch.linalg import vector_norm
from torch.nn.functional import conv1d, pad

Expand Down Expand Up @@ -55,6 +55,15 @@ def __init__(self, upper_diags: Tensor) -> None:
self._upper_diags: Tensor
self.register_tensor(upper_diags, "_upper_diags")

@property
def shape(self) -> Size:
"""Return the structured matrix's shape.

Returns:
The shape of the matrix.
"""
return self._upper_diags.shape + self._upper_diags.shape

@classmethod
def from_dense(cls, mat: Tensor) -> TriuToeplitzMatrix:
"""Construct from a PyTorch tensor.
Expand Down
15 changes: 15 additions & 0 deletions test/structures/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -622,6 +622,21 @@ def test_frobenius_norm(self, dev: device, dtype: torch.dtype):
structured = self.STRUCTURED_MATRIX_CLS.from_dense(sym_mat)
report_nonclose(truth, structured.frobenius_norm())

@mark.parametrize("dtype", DTYPES, ids=DTYPE_IDS)
@mark.parametrize("dev", DEVICES, ids=DEVICE_IDS)
def test_shape(self, dev: device, dtype: torch.dtype):
"""Test shape of a structured matrix.

Args:
dev: The device on which to run the test.
dtype: The data type of the matrices.
"""
for dim in self.DIMS:
manual_seed(0)
sym_mat = symmetrize(rand((dim, dim), device=dev, dtype=dtype))
structured = self.STRUCTURED_MATRIX_CLS.from_dense(sym_mat)
assert sym_mat.shape == structured.shape

@mark.expensive
def test_visual(self):
"""Create pictures and animations of the structure.
Expand Down
Loading