Skip to content

Commit

Permalink
Creating preference testing stub (#2443)
Browse files Browse the repository at this point in the history
Summary:

Adding `preference_stubs.py` and migrate `PairwiseModelBridgeTest` logic to it.

Reviewed By: esantorella

Differential Revision: D57131012
  • Loading branch information
ItsMrLin authored and facebook-github-bot committed May 14, 2024
1 parent 231d45d commit 938fdb8
Show file tree
Hide file tree
Showing 2 changed files with 176 additions and 108 deletions.
118 changes: 10 additions & 108 deletions ax/modelbridge/tests/test_pairwise_modelbridge.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,25 +6,21 @@

# pyre-strict

from typing import Any, Dict

import numpy as np
import torch
from ax.core import Arm, GeneratorRun, Metric, Objective, OptimizationConfig
from ax.core import Metric, Objective, OptimizationConfig
from ax.core.observation import ObservationData, ObservationFeatures
from ax.core.parameter import RangeParameter
from ax.core.types import TEvaluationOutcome, TParameterization
from ax.modelbridge.pairwise import (
_binary_pref_to_comp_pair,
_consolidate_comparisons,
PairwiseModelBridge,
)
from ax.models.torch.botorch_modular.model import BoTorchModel
from ax.models.torch.botorch_modular.surrogate import Surrogate
from ax.service.utils.instantiation import InstantiationBase
from ax.utils.common.constants import Keys
from ax.utils.common.testutils import TestCase
from ax.utils.common.typeutils import checked_cast
from ax.utils.testing.preference_stubs import get_pbo_experiment
from botorch.acquisition.monte_carlo import qNoisyExpectedImprovement
from botorch.acquisition.preference import AnalyticExpectedUtilityOfBestOption
from botorch.models.pairwise_gp import PairwiseGP, PairwiseLaplaceMarginalLogLikelihood
Expand All @@ -35,101 +31,7 @@
class PairwiseModelBridgeTest(TestCase):
def setUp(self) -> None:
super().setUp()

def pairwise_arm_eval(
parameters: Dict[str, TParameterization]
) -> Dict[str, TEvaluationOutcome]:
# A pair at a time
assert len(parameters.keys()) == 2
arm1, arm2 = list(parameters.keys())
arm1_outcome_values = [
checked_cast(float, v) for v in parameters[arm1].values()
]
arm2_outcome_values = [
checked_cast(float, v) for v in parameters[arm2].values()
]
arm1_sum = float(sum(arm1_outcome_values))
arm2_sum = float(sum(arm2_outcome_values))
is_arm1_preferred = int(arm1_sum - arm2_sum > 0)
return {
arm1: {Keys.PAIRWISE_PREFERENCE_QUERY.value: is_arm1_preferred},
arm2: {Keys.PAIRWISE_PREFERENCE_QUERY.value: 1 - is_arm1_preferred},
}

def single_arm_eval(parameters: Dict[str, Any]) -> Dict[str, Any]:
assert len(parameters.keys()) == 1
arm1 = list(parameters.keys())[0]
return {
arm1: {"dummy_outcome": 0.0},
}

experiment = InstantiationBase.make_experiment(
name="pref_experiment",
parameters=[
{
"name": "x1",
"type": "range",
"bounds": [0.0, 0.6],
},
{
"name": "x2",
"type": "range",
"bounds": [0.0, 0.7],
},
],
objectives={Keys.PAIRWISE_PREFERENCE_QUERY.value: "minimize"},
is_test=True,
)

# Adding arms with experimental instead of preference metrics
for _ in range(5):
arm = {}
for param_name, param in experiment.search_space.parameters.items():
lb = checked_cast(RangeParameter, param).lower
ub = checked_cast(RangeParameter, param).upper
arm[param_name] = np.random.uniform(low=lb, high=ub)
gr = GeneratorRun([Arm(arm)])
trial = experiment.new_batch_trial(generator_run=gr)
trial.attach_batch_trial_data(
raw_data=single_arm_eval({a.name: a.parameters for a in trial.arms})
)
trial.mark_running(no_runner_required=True)
trial.mark_completed()

# Preference Learning
# pairwise evaluation of randomly generated pairs of arms
for _ in range(3):
gr = GeneratorRun(
[
Arm(
{
pn: np.random.uniform(
low=checked_cast(RangeParameter, p).lower,
high=checked_cast(RangeParameter, p).upper,
)
for pn, p in experiment.search_space.parameters.items()
}
)
for _ in range(2)
]
)
trial = experiment.new_batch_trial(generator_run=gr)
trial.attach_batch_trial_data(
raw_data=pairwise_arm_eval({a.name: a.parameters for a in trial.arms})
)
trial.mark_running(no_runner_required=True)
trial.mark_completed()

# Manually add arms from previous trials
trial = experiment.new_batch_trial()
trial.add_arm(experiment.trials[1].arms[0])
trial.add_arm(experiment.trials[2].arms[0])
trial.attach_batch_trial_data(
raw_data=pairwise_arm_eval({a.name: a.parameters for a in trial.arms})
)
trial.mark_running(no_runner_required=True)
trial.mark_completed()

experiment = get_pbo_experiment()
self.experiment = experiment
self.data = experiment.lookup_data()

Expand Down Expand Up @@ -186,25 +88,25 @@ def test_PairwiseModelBridge(self) -> None:
),
]
observation_features = [
ObservationFeatures(parameters={"X1": 0.1, "X2": 0.2}, trial_index=0),
ObservationFeatures(parameters={"X1": 0.3, "X2": 0.4}, trial_index=0),
ObservationFeatures(parameters={"x1": 0.1, "x2": 0.2}, trial_index=0),
ObservationFeatures(parameters={"x1": 0.3, "x2": 0.4}, trial_index=0),
]
observation_features_with_metadata = [
ObservationFeatures(parameters={"X1": 0.1, "X2": 0.2}, trial_index=0),
ObservationFeatures(parameters={"x1": 0.1, "x2": 0.2}, trial_index=0),
ObservationFeatures(
parameters={"X1": 0.3, "X2": 0.4},
parameters={"x1": 0.3, "x2": 0.4},
trial_index=0,
metadata={"metadata_key": "metadata_val"},
),
]
parameters = ["X1", "X2"]
parameter_names = list(self.experiment.parameters.keys())
outcomes = [checked_cast(str, Keys.PAIRWISE_PREFERENCE_QUERY.value)]

datasets, _, candidate_metadata = pmb._convert_observations(
observation_data=observation_data,
observation_features=observation_features,
outcomes=outcomes,
parameters=parameters,
parameters=parameter_names,
search_space_digest=None,
)
self.assertTrue(len(datasets) == 1)
Expand All @@ -215,7 +117,7 @@ def test_PairwiseModelBridge(self) -> None:
observation_data=observation_data,
observation_features=observation_features_with_metadata,
outcomes=outcomes,
parameters=parameters,
parameters=parameter_names,
search_space_digest=None,
)
self.assertTrue(len(datasets) == 1)
Expand Down
166 changes: 166 additions & 0 deletions ax/utils/testing/preference_stubs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Any, Callable, Dict, List, Optional

import numpy as np
from ax.core import Arm, GeneratorRun
from ax.core.experiment import Experiment
from ax.core.parameter import RangeParameter
from ax.core.types import TEvaluationOutcome, TParameterization
from ax.service.utils.instantiation import InstantiationBase
from ax.utils.common.constants import Keys
from ax.utils.common.typeutils import checked_cast

# from ExperimentType in ae/lazarus/fb/utils/if/ae.thrift
PBO_EXPERIMENT_TYPE: str = "PREFERENCE_LEARNING"
PE_EXPERIMENT_TYPE: str = "PREFERENCE_EXPLORATION"


def sum_utility(parameters: TParameterization) -> float:
"""Test utility function that sums over parameter values"""
values = [checked_cast(float, v) for v in parameters.values()]
return sum(values)


def pairwise_pref_metric_eval(
parameters: Dict[str, TParameterization],
utility_func: Callable[[TParameterization], float] = sum_utility,
) -> Dict[str, TEvaluationOutcome]:
"""evaluating pairwise comparisons using utility_func"""
assert len(parameters.keys()) == 2
arm1, arm2 = list(parameters.keys())
arm1_sum, arm2_sum = sum_utility(parameters[arm1]), sum_utility(parameters[arm2])
is_arm1_preferred = int(arm1_sum - arm2_sum > 0)
return {
arm1: {Keys.PAIRWISE_PREFERENCE_QUERY.value: is_arm1_preferred},
arm2: {Keys.PAIRWISE_PREFERENCE_QUERY.value: 1 - is_arm1_preferred},
}


def experimental_metric_eval(
parameters: Dict[str, Any], metric_names: List[str]
) -> Dict[str, Any]:
return {
arm_name: {
# metric_name: (mean, sem)
metric_name: (np.random.random() + 1.0, 0.05)
for metric_name in metric_names
}
for arm_name, _ in parameters.items()
}


def get_pbo_experiment(
num_parameters: int = 2,
num_experimental_metrics: int = 3,
tracking_metric_names: Optional[List[str]] = None,
num_experimental_trials: int = 3,
num_preference_trials: int = 3,
num_preference_trials_w_repeated_arm: int = 5,
include_sq: bool = True,
partial_data: bool = False,
) -> Experiment:
"""Create synthetic preferential BO (not preference exploration) experiment"""
tracking_metric_names = [
f"metric{i}" for i in range(1, num_experimental_metrics + 1)
]

sq = {f"x{i}": 0.0 for i in range(1, num_parameters + 1)} if include_sq else None

parameters = [
{
"name": f"x{i}",
"type": "range",
"bounds": [0.0, 1.0],
}
for i in range(1, num_parameters + 1)
]

has_preference_query = (
num_preference_trials > 0 or num_preference_trials_w_repeated_arm > 0
)
experiment = InstantiationBase.make_experiment(
name="pref_experiment",
# pyre-ignore: Incompatible parameter type [6]
parameters=parameters,
objectives=(
{Keys.PAIRWISE_PREFERENCE_QUERY.value: "maximize"}
if has_preference_query
else {tracking_metric_names[0]: "maximize"}
),
tracking_metric_names=tracking_metric_names,
is_test=True,
# pyre-ignore: Incompatible parameter type [6]
status_quo=sq,
)

# Adding arms with experimental metrics
for _ in range(num_experimental_trials):
arm = {}
for param_name, param in experiment.search_space.parameters.items():
lb = checked_cast(RangeParameter, param).lower
ub = checked_cast(RangeParameter, param).upper
arm[param_name] = np.random.uniform(low=lb, high=ub)
gr = (
# pyre-ignore: Incompatible parameter type [6]
GeneratorRun([Arm(arm), Arm(sq)])
if include_sq
else GeneratorRun([Arm(arm)])
)
trial = experiment.new_batch_trial(generator_run=gr)
raw_data = experimental_metric_eval(
parameters={a.name: a.parameters for a in trial.arms},
metric_names=tracking_metric_names,
)
# create incomplete data by dropping the first metric
if partial_data:
for v in raw_data.values():
del v[tracking_metric_names[-1]]
trial.attach_batch_trial_data(raw_data=raw_data)
trial.mark_running(no_runner_required=True)
trial.mark_completed()

# Adding arms with preferential queries
for _ in range(num_preference_trials):
gr = GeneratorRun(
[
Arm(
{
pn: np.random.uniform(
low=checked_cast(RangeParameter, p).lower,
high=checked_cast(RangeParameter, p).upper,
)
for pn, p in experiment.search_space.parameters.items()
}
)
for _ in range(2)
]
)
trial = experiment.new_batch_trial(generator_run=gr)
trial.attach_batch_trial_data(
raw_data=pairwise_pref_metric_eval(
parameters={a.name: a.parameters for a in trial.arms}
)
)
trial.mark_running(no_runner_required=True)
trial.mark_completed()

# Adding preferential queries using previously evaluated arms
for _ in range(num_preference_trials_w_repeated_arm):
arms = np.random.choice(
list(experiment.arms_by_name.values()), 2, replace=False
)
trial = experiment.new_batch_trial()
trial.add_arms_and_weights(arms=arms)
trial.attach_batch_trial_data(
raw_data=pairwise_pref_metric_eval(
parameters={a.name: a.parameters for a in trial.arms}
)
)
trial.mark_running(no_runner_required=True)
trial.mark_completed()

return experiment

0 comments on commit 938fdb8

Please sign in to comment.