Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Additional scale functions for AffineOp #109

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions flowtorch/bijectors/affine_autoregressive.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,15 +16,17 @@ def __init__(
*,
shape: torch.Size,
context_shape: Optional[torch.Size] = None,
clamp_values: bool = False,
log_scale_min_clip: float = -5.0,
log_scale_max_clip: float = 3.0,
sigmoid_bias: float = 2.0,
scale_fn: str = "softplus",
) -> None:
super().__init__(
params_fn,
shape=shape,
context_shape=context_shape,
)
self.clamp_values = clamp_values
self.log_scale_min_clip = log_scale_min_clip
self.log_scale_max_clip = log_scale_max_clip
self.sigmoid_bias = sigmoid_bias
self.scale_fn = scale_fn
79 changes: 63 additions & 16 deletions flowtorch/bijectors/ops/affine.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

import flowtorch
import torch
import torch.nn.functional as F
from flowtorch.bijectors.base import Bijector
from flowtorch.ops import clamp_preserve_gradients
from torch.distributions.utils import _sum_rightmost
Expand All @@ -22,25 +23,66 @@ def __init__(
*,
shape: torch.Size,
context_shape: Optional[torch.Size] = None,
clamp_values: bool = False,
log_scale_min_clip: float = -5.0,
log_scale_max_clip: float = 3.0,
sigmoid_bias: float = 2.0,
scale_fn: str = "softplus",
) -> None:
super().__init__(params_fn, shape=shape, context_shape=context_shape)
self.clamp_values = clamp_values
self.log_scale_min_clip = log_scale_min_clip
self.log_scale_max_clip = log_scale_max_clip
self.sigmoid_bias = sigmoid_bias
self.scale_fn = scale_fn

def _scale_fn(
self, unbounded_scale: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# NOTE: Need to hardcode log(f(x)) for numerical stability
if self.scale_fn == "softplus":
scale = F.softplus(unbounded_scale)
log_scale = torch.log(scale)
elif self.scale_fn == "exp":
scale = torch.exp(unbounded_scale)
log_scale = unbounded_scale
elif self.scale_fn == "sigmoid":
scale = torch.sigmoid(unbounded_scale)
log_scale = F.logsigmoid(unbounded_scale)
else:
raise ValueError(f"Unknown scale function: {self.scale_fn}")

return scale, log_scale

def _inv_scale_fn(
self, unbounded_scale: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# NOTE: Need to hardcode 1./log(f(x)) for numerical stability
if self.scale_fn == "softplus":
scale = F.softplus(unbounded_scale)
inverse_scale = F.softplus(unbounded_scale).reciprocal()
log_scale = torch.log(scale)
elif self.scale_fn == "exp":
inverse_scale = torch.exp(-unbounded_scale)
log_scale = unbounded_scale
elif self.scale_fn == "sigmoid":
inverse_scale = torch.exp(-unbounded_scale) + 1.0
log_scale = F.logsigmoid(unbounded_scale)
else:
raise ValueError(f"Unknown scale function: {self.scale_fn}")

return inverse_scale, log_scale

def _forward(
self, x: torch.Tensor, params: Optional[Sequence[torch.Tensor]]
) -> Tuple[torch.Tensor, torch.Tensor]:
assert params is not None

mean, log_scale = params
log_scale = clamp_preserve_gradients(
log_scale, self.log_scale_min_clip, self.log_scale_max_clip
)
scale = torch.exp(log_scale)
mean, unbounded_scale = params
if self.clamp_values:
unbounded_scale = clamp_preserve_gradients(
unbounded_scale, self.log_scale_min_clip, self.log_scale_max_clip
)

scale, log_scale = self._scale_fn(unbounded_scale)
y = scale * x + mean
return y, _sum_rightmost(log_scale, self.domain.event_dim)

Expand All @@ -49,11 +91,13 @@ def _inverse(
) -> Tuple[torch.Tensor, torch.Tensor]:
assert params is not None

mean, log_scale = params
log_scale = clamp_preserve_gradients(
log_scale, self.log_scale_min_clip, self.log_scale_max_clip
)
inverse_scale = torch.exp(-log_scale)
mean, unbounded_scale = params
if self.clamp_values:
unbounded_scale = clamp_preserve_gradients(
unbounded_scale, self.log_scale_min_clip, self.log_scale_max_clip
)

inverse_scale, log_scale = self._inv_scale_fn(unbounded_scale)
x_new = (y - mean) * inverse_scale
return x_new, _sum_rightmost(log_scale, self.domain.event_dim)

Expand All @@ -65,10 +109,13 @@ def _log_abs_det_jacobian(
) -> torch.Tensor:
assert params is not None

_, log_scale = params
log_scale = clamp_preserve_gradients(
log_scale, self.log_scale_min_clip, self.log_scale_max_clip
)
_, unbounded_scale = params
if self.clamp_values:
unbounded_scale = clamp_preserve_gradients(
unbounded_scale, self.log_scale_min_clip, self.log_scale_max_clip
)
_, log_scale = self._scale_fn(unbounded_scale)

return _sum_rightmost(log_scale, self.domain.event_dim)

def param_shapes(self, shape: torch.Size) -> Tuple[torch.Size, torch.Size]:
Expand Down