Skip to content
This repository has been archived by the owner on Nov 3, 2023. It is now read-only.

Commit

Permalink
long-form cmd line args (#3841)
Browse files Browse the repository at this point in the history
  • Loading branch information
klshuster authored Jul 22, 2021
1 parent e0f6bd7 commit 17656e6
Showing 1 changed file with 22 additions and 17 deletions.
39 changes: 22 additions & 17 deletions projects/hallucination/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,19 +29,19 @@ Despite showing increasingly human-like conversational abilities, state-of-the-a

You can access the [WoW](https://openreview.net/forum?id=r1l73iRqKm) dataset in ParlAI via the following:

parlai dd -t wizard_of_wikipedia
parlai dd --task wizard_of_wikipedia

### CMU Document Grounded Conversations (CMU_DoG)

You can access the [CMU_DoG](https://arxiv.org/abs/1809.07358) dataset in ParlAI via the following:

parlai dd -t cmu_dog
parlai dd --task cmu_dog

To use the modified splits as described in the [paper](https://arxiv.org/abs/2104.07567), set the following flags for the seen/unseen splits, respectively:

parlai dd -t cmu_dog --cmu-dog-split-type seen
parlai dd --task cmu_dog --cmu-dog-split-type seen

parlai dd -t cmu_dog --cmu-dog-split-type unseen --datatype test
parlai dd --task cmu_dog --cmu-dog-split-type unseen --datatype test

## Pre-Trained Models

Expand Down Expand Up @@ -79,61 +79,66 @@ The following commands demonstrate how to train some of the models above; we int

#### Train a BART-Large RAG-Token model with DPR Retrieval on WoW

parlai train_model -m rag -t wizard_of_wikipedia \
parlai train_model --model rag --task wizard_of_wikipedia \
--rag-model-type token --rag-retriever-type dpr --dpr-model-file zoo:hallucination/multiset_dpr/hf_bert_base.cp \
--generation-model bart -o arch/bart_large \
--generation-model bart --init-opt arch/bart_large \
--batchsize 16 --fp16 True --gradient-clip 0.1 --label-truncate 128 \
--log-every-n-secs 30 --lr-scheduler reduceonplateau --lr-scheduler-patience 1 \
--model-parallel True --optimizer adam --text-truncate 512 --truncate 512 \
-lr 1e-05 -vmm min -veps 0.25 -vme 1000 -vmt ppl -vp 5 \
--learningrate 1e-05 --validation-metric-mode min --validation-every-n-epochs 0.25 \
--validation-max-exs 1000 --validation-metric ppl --validation-patience 5 \

#### Train a T5-Large RAG-Turn Doc-Then-Turn model with DPR Retrieval on WoW

parlai train_model -m rag -t wizard_of_wikipedia \
parlai train_model --model rag --task wizard_of_wikipedia \
--rag-model-type turn --rag-turn-marginalize doc_then_turn --rag-retriever-type dpr \
--generation-model t5 --t5-model-arch t5-large \
--batchsize 8 --fp16 True --gradient-clip 0.1 --label-truncate 128 \
--log-every-n-secs 30 --lr-scheduler reduceonplateau --lr-scheduler-patience 1 \
--model-parallel True --optimizer adam --text-truncate 512 --truncate 512 \
-lr 1e-05 -vmm min -veps 0.25 -vme 1000 -vmt ppl -vp 5 \
--learningrate 1e-05 --validation-metric-mode min --validation-every-n-epochs 0.25 \
--validation-max-exs 1000 --validation-metric ppl --validation-patience 5 \

#### Train a BlenderBot-2.7B RAG Sequence Model with DPR-Poly Retrieval on WoW

For the BlenderBot model, we add extra positions to the encoder, so that we can retain additional information from the retrieved documents.

parlai train_model -m rag -t wizard_of_wikipedia \
parlai train_model --model rag --task wizard_of_wikipedia \
--rag-model-type turn --rag-turn-marginalize doc_then_turn --rag-retriever-type dpr \
--generation-model transformer/generator -o arch/blenderbot_3B \
--generation-model transformer/generator --init-opt arch/blenderbot_3B \
--n-extra-positions 128 \
--init-model zoo:blender/blender_3B/model --dict-file zoo:blender/blender_3B/model.dict \
--batchsize 8 --fp16 True --gradient-clip 0.1 \
--log-every-n-secs 30 --lr-scheduler reduceonplateau --lr-scheduler-patience 1 \
--model-parallel True --optimizer adam \
-lr 1e-05 -vmm min -veps 0.25 -vme 1000 -vmt ppl -vp 5 \
--learningrate 1e-05 --validation-metric-mode min --validation-every-n-epochs 0.25 \
--validation-max-exs 1000 --validation-metric ppl --validation-patience 5 \

#### Train a BART-Large FiD Model, with a DPR Retriever initialized from a DPR Model trained with RAG.

This is the **BART FiD RAG** model specified above.

parlai train_model -m fid -t wizard_of_wikipedia \
parlai train_model --model fid --task wizard_of_wikipedia \
--rag-retriever-type dpr --query-model bert_from_parlai_rag \
--dpr-model-file zoo:hallucination/bart_rag_token/model \
--generation-model bart -o arch/bart_large \
--generation-model bart --init-opt arch/bart_large \
--batchsize 16 --fp16 True --gradient-clip 0.1 --label-truncate 128 \
--log-every-n-secs 30 --lr-scheduler reduceonplateau --lr-scheduler-patience 1 \
--model-parallel True --optimizer adam --text-truncate 512 --truncate 512 \
-lr 1e-05 -vmm min -veps 0.25 -vme 1000 -vmt ppl -vp 5 \
--learningrate 1e-05 --validation-metric-mode min --validation-every-n-epochs 0.25 \
--validation-max-exs 1000 --validation-metric ppl --validation-patience 5 \

#### Train a T5-Base FiD Model, using a smaller index for debug purposes.

We provide a smaller FAISS index comprising ~3k documents, which encompasses all topics appearing in the Wizard of Wikipedia dataset.

parlai train_model -m fid -t wizard_of_wikipedia \
parlai train_model --model fid --task wizard_of_wikipedia \
--rag-retriever-type dpr --query-model bert_from_parlai_rag \
--dpr-model-file zoo:hallucination/bart_rag_token/model \
--retriever-small-index exact \
--generation-model t5 --t5-model-arch t5-base \
--batchsize 16 --fp16 True --gradient-clip 0.1 --label-truncate 128 \
--log-every-n-secs 30 --lr-scheduler reduceonplateau --lr-scheduler-patience 1 \
--model-parallel True --optimizer adam --text-truncate 512 --truncate 512 \
-lr 1e-05 -vmm min -veps 0.25 -vme 1000 -vmt ppl -vp 5 \
--learningrate 1e-05 --validation-metric-mode min --validation-every-n-epochs 0.25 \
--validation-max-exs 1000 --validation-metric ppl --validation-patience 5 \

0 comments on commit 17656e6

Please sign in to comment.