-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added bucketization feature to IndexLSH.
- Loading branch information
1 parent
697b6dd
commit 0160288
Showing
3 changed files
with
161 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
#include <faiss/IndexLSHBuckets.h> | ||
#include <faiss/IndexLSH.h> | ||
#include <cstdio> | ||
#include <cstring> | ||
|
||
#include <algorithm> | ||
#include <memory> | ||
|
||
#include <faiss/impl/FaissAssert.h> | ||
#include <faiss/utils/hamming.h> | ||
|
||
namespace faiss { | ||
IndexLSHBuckets::IndexLSHBuckets(idx_t d, int nbits, bool rotate_data, bool train_thresholds) | ||
: IndexFlatCodes((nbits + 7) / 8, d), | ||
nbits(nbits), | ||
rotate_data(rotate_data), | ||
train_thresholds(train_thresholds), | ||
rrot(d, nbits) { | ||
is_trained = !train_thresholds; | ||
|
||
if (rotate_data) { | ||
rrot.init(5); | ||
} else { | ||
FAISS_THROW_IF_NOT(d >= nbits); | ||
} | ||
|
||
} | ||
|
||
const float* IndexLSHBuckets::apply_preprocess(idx_t n, const float* x) const { | ||
float* xt = nullptr; | ||
if (rotate_data) { | ||
// also applies bias if exists | ||
xt = rrot.apply(n, x); | ||
} else if (d != nbits) { | ||
assert(nbits < d); | ||
xt = new float[nbits * n]; | ||
float* xp = xt; | ||
for (idx_t i = 0; i < n; i++) { | ||
const float* xl = x + i * d; | ||
for (int j = 0; j < nbits; j++) | ||
*xp++ = xl[j]; | ||
} | ||
} | ||
|
||
if (train_thresholds) { | ||
if (xt == nullptr) { | ||
xt = new float[nbits * n]; | ||
memcpy(xt, x, sizeof(*x) * n * nbits); | ||
} | ||
|
||
float* xp = xt; | ||
for (idx_t i = 0; i < n; i++) | ||
for (int j = 0; j < nbits; j++) | ||
*xp++ -= thresholds[j]; | ||
} | ||
|
||
return xt ? xt : x; | ||
} | ||
|
||
void IndexLSHBuckets::train(idx_t n, const float* x) { | ||
if (train_thresholds) { | ||
thresholds.resize(nbits); | ||
train_thresholds = false; | ||
const float* xt = apply_preprocess(n, x); | ||
std::unique_ptr<const float[]> del(xt == x ? nullptr : xt); | ||
train_thresholds = true; | ||
|
||
std::unique_ptr<float[]> transposed_x(new float[n * nbits]); | ||
|
||
for (idx_t i = 0; i < n; i++) | ||
for (idx_t j = 0; j < nbits; j++) | ||
transposed_x[j * n + i] = xt[i * nbits + j]; | ||
|
||
for (idx_t i = 0; i < nbits; i++) { | ||
float* xi = transposed_x.get() + i * n; | ||
// std::nth_element | ||
std::sort(xi, xi + n); | ||
if (n % 2 == 1) | ||
thresholds[i] = xi[n / 2]; | ||
else | ||
thresholds[i] = (xi[n / 2 - 1] + xi[n / 2]) / 2; | ||
} | ||
} | ||
is_trained = true; | ||
} | ||
|
||
/** | ||
* @brief Computes the hash bucket mappings for a set of data points. | ||
* | ||
* This method applies preprocessing to the input data, computes the hash values | ||
* using a Locality-Sensitive Hashing (LSH) approach, and stores the resulting hash | ||
* bucket numbers in a 2D vector. Each data point's hash bucket number is calculated | ||
* based on the hash of its corresponding feature vector. | ||
* | ||
* @param n The number of data points to be processed. | ||
* @param x A pointer to the input feature matrix (a 2D array of floats). | ||
* @param bytes A pointer to an array of bytes where the bit representation of | ||
* the feature vectors will be stored. | ||
* @param bucket_count The number of hash buckets to be used. | ||
* @param bucket_mapping A reference to a 2D vector (std::vector<std::vector<uint64_t>>) | ||
* where the resulting hash bucket mappings will be stored. | ||
* Each row in the vector corresponds to one data point, | ||
* and each entry in a row represents a hash bucket number. | ||
* | ||
* @note This method assumes that the LSH model is already trained. It also assumes | ||
* that the number of buckets is defined by `bucket_count` and that the | ||
* hash codes are computed using a bit representation of the input data. | ||
*/ | ||
void IndexLSHBuckets::Hash_code(idx_t n, const float* x, uint8_t* bytes, int bucket_count,std::vector<std::vector<uint64_t>>& bucket_mapping) const { | ||
FAISS_THROW_IF_NOT(is_trained); | ||
const float* xt = apply_preprocess(n, x); | ||
std::unique_ptr<const float[]> del(xt == x ? nullptr : xt); | ||
fvecs2bitvecs(xt, bytes, nbits, n); | ||
for (idx_t i = 0; i < n; ++i) { | ||
uint64_t hash_value = 0; | ||
for (int j = 0; j < nbits / 8; ++j) { | ||
hash_value |= static_cast<uint64_t>(bytes[i * (nbits / 8) + j]) << (8 * j); | ||
} | ||
uint64_t bucket_number = hash_value % bucket_count; | ||
|
||
bucket_mapping[i].push_back(bucket_number); | ||
} | ||
} | ||
|
||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
#ifndef INDEX_LSH_H | ||
#define INDEX_LSH_H | ||
|
||
#include <vector> | ||
|
||
#include <faiss/IndexFlatCodes.h> | ||
#include <faiss/VectorTransform.h> | ||
|
||
namespace faiss { | ||
/** The sign of each vector component is put in a binary signature */ | ||
struct IndexLSHBuckets : IndexFlatCodes { | ||
|
||
int nbits; ///< nb of bits per vector | ||
bool rotate_data; ///< whether to apply a random rotation to input | ||
bool train_thresholds; ///< whether we train thresholds or use 0 | ||
|
||
RandomRotationMatrix rrot; ///< optional random rotation | ||
|
||
std::vector<float> thresholds; ///< thresholds to compare with | ||
|
||
IndexLSHBuckets( | ||
idx_t d, | ||
int nbits, | ||
bool rotate_data = true, | ||
bool train_thresholds = false); | ||
|
||
const float* apply_preprocess(idx_t n, const float* x) const; | ||
void train(idx_t n, const float* x) override; | ||
|
||
void Hash_code(idx_t n, const float* x, uint8_t* bytes, int bucket_count, std::vector<std::vector<uint64_t>>& bucket_mapping) const; | ||
}; | ||
} | ||
|
||
#endif |