Skip to content
/ UAP Public

Implementation of CVPR 2022 paper "Fingerprinting Deep Neural Networks Globally via Universal Adversarial Perturbations"

Notifications You must be signed in to change notification settings

faiimea/UAP

Repository files navigation

UAP

This repo is implementation of CVPR 2022 paper "Fingerprinting Deep Neural Networks Globally via Universal Adversarial Perturbations"

Prerequisites

We provide the dependency file of our experimental environment, you can install all dependencies by creating a new anaconda virtual environment and running pip install -r requirements.txt

Directory Structure

.
├── encoder.py
├── encoder_trainingdata_preparation.py
├── encoder_training.py
├── fingerprint_point_selection.py
├── main.py
├── model_ext
│   └── test_model_extrac_adv_softlabel.py
├── preparation
│   ├── embedding.py
│   ├── model_ext_2.py
│   ├── model_extrac_adv_softlabel.py
│   ├── model_extraction_cifar10.py
│   ├── normal_adversarial_generation.py
│   ├── simple_extraction_cifar10.py
│   ├── test_model_extrac_adv_softlabel.py
│   └── uap.py
├── README.md
├── test.py
├── train
│   ├── model_structure.py
│   ├── split_subtrain.py
│   ├── train_cifar10_multilabel.py
│   ├── train_cifar10.py
│   └── train_some_models.py
└── utils.py

Run

Model Preparation

  • train_cifar10.py: Train Victim model
  • model_extrac_adv_softlabel: Train piracy models
  • train_some_models.py: Train homo models

Fingerprint Generation

  • embedding: Gain dataset for fingerprint
  • uap: Generate universal adversarial pertubation

Encoder Training

  • main: Train and test of framework

Citation

Please cite this work if you find it useful:

@inproceedings{peng2022fingerprinting,
  title={Fingerprinting deep neural networks globally via universal adversarial perturbations},
  author={Peng, Zirui and Li, Shaofeng and Chen, Guoxing and Zhang, Cheng and Zhu, Haojin and Xue, Minhui},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  pages={13430--13439},
  year={2022}
}

About

Implementation of CVPR 2022 paper "Fingerprinting Deep Neural Networks Globally via Universal Adversarial Perturbations"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages