Skip to content

Commit

Permalink
Add xyxy2xywhn() (ultralytics#3765)
Browse files Browse the repository at this point in the history
* Edit Comments for numpy2torch tensor process

Edit Comments for numpy2torch tensor process

* add xyxy2xywhn

add xyxy2xywhn

* add xyxy2xywhn

* formatting

* pass arguments

pass arguments

* edit comment for xyxy2xywhn()

edit comment for xyxy2xywhn()

* cleanup datasets.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
  • Loading branch information
developer0hye and glenn-jocher authored Jun 25, 2021
1 parent 39130f3 commit 584a9b0
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 8 deletions.
14 changes: 6 additions & 8 deletions utils/datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,8 @@
from torch.utils.data import Dataset
from tqdm import tqdm

from utils.general import check_requirements, check_file, check_dataset, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, \
segment2box, segments2boxes, resample_segments, clean_str
from utils.general import check_requirements, check_file, check_dataset, xywh2xyxy, xywhn2xyxy, xyxy2xywhn, \
xyn2xy, segment2box, segments2boxes, resample_segments, clean_str
from utils.torch_utils import torch_distributed_zero_first

# Parameters
Expand Down Expand Up @@ -192,7 +192,7 @@ def __next__(self):
img = letterbox(img0, self.img_size, stride=self.stride)[0]

# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB and HWC to CHW
img = np.ascontiguousarray(img)

return path, img, img0, self.cap
Expand Down Expand Up @@ -255,7 +255,7 @@ def __next__(self):
img = letterbox(img0, self.img_size, stride=self.stride)[0]

# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB and HWC to CHW
img = np.ascontiguousarray(img)

return img_path, img, img0, None
Expand Down Expand Up @@ -336,7 +336,7 @@ def __next__(self):
img = np.stack(img, 0)

# Convert
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and BHWC to BCHW
img = np.ascontiguousarray(img)

return self.sources, img, img0, None
Expand Down Expand Up @@ -552,9 +552,7 @@ def __getitem__(self, index):

nL = len(labels) # number of labels
if nL:
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0]) # xyxy to xywh normalized

if self.augment:
# flip up-down
Expand Down
10 changes: 10 additions & 0 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -393,6 +393,16 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
return y


def xyxy2xywhn(x, w=640, h=640):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
y[:, 2] = (x[:, 2] - x[:, 0]) / w # width
y[:, 3] = (x[:, 3] - x[:, 1]) / h # height
return y


def xyn2xy(x, w=640, h=640, padw=0, padh=0):
# Convert normalized segments into pixel segments, shape (n,2)
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
Expand Down

0 comments on commit 584a9b0

Please sign in to comment.