forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
NGA xView 2018 Dataset Auto-Download (ultralytics#3775)
* update clip_coords for numpy * uncomment * cleanup * Add autosplits * fix * cleanup
- Loading branch information
1 parent
13147eb
commit 5d353d3
Showing
3 changed files
with
125 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
# xView 2018 dataset https://challenge.xviewdataset.org | ||
# ----> NOTE: DOWNLOAD DATA MANUALLY from URL above and unzip to /datasets/xView before running train command below | ||
# Train command: python train.py --data xView.yaml | ||
# Default dataset location is next to YOLOv5: | ||
# /parent | ||
# /datasets/xView | ||
# /yolov5 | ||
|
||
|
||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | ||
path: ../datasets/xView # dataset root dir | ||
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images | ||
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images | ||
|
||
# Classes | ||
nc: 60 # number of classes | ||
names: [ 'Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus', | ||
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer', | ||
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car', | ||
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge', | ||
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane', | ||
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck', | ||
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed', | ||
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad', | ||
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower' ] # class names | ||
|
||
|
||
# Download script/URL (optional) --------------------------------------------------------------------------------------- | ||
download: | | ||
import json | ||
import os | ||
from pathlib import Path | ||
import numpy as np | ||
from PIL import Image | ||
from tqdm import tqdm | ||
from utils.datasets import autosplit | ||
from utils.general import download, xyxy2xywhn | ||
def convert_labels(fname=Path('xView/xView_train.geojson')): | ||
# Convert xView geoJSON labels to YOLO format | ||
path = fname.parent | ||
with open(fname) as f: | ||
print(f'Loading {fname}...') | ||
data = json.load(f) | ||
# Make dirs | ||
labels = Path(path / 'labels' / 'train') | ||
os.system(f'rm -rf {labels}') | ||
labels.mkdir(parents=True, exist_ok=True) | ||
# xView classes 11-94 to 0-59 | ||
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, | ||
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, | ||
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, | ||
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] | ||
shapes = {} | ||
for feature in tqdm(data['features'], desc=f'Converting {fname}'): | ||
p = feature['properties'] | ||
if p['bounds_imcoords']: | ||
id = p['image_id'] | ||
file = path / 'train_images' / id | ||
if file.exists(): # 1395.tif missing | ||
try: | ||
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) | ||
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' | ||
cls = p['type_id'] | ||
cls = xview_class2index[int(cls)] # xView class to 0-60 | ||
assert 59 >= cls >= 0, f'incorrect class index {cls}' | ||
# Write YOLO label | ||
if id not in shapes: | ||
shapes[id] = Image.open(file).size | ||
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) | ||
with open((labels / id).with_suffix('.txt'), 'a') as f: | ||
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt | ||
except Exception as e: | ||
print(f'WARNING: skipping one label for {file}: {e}') | ||
# Download manually from https://challenge.xviewdataset.org | ||
dir = Path(yaml['path']) # dataset root dir | ||
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels | ||
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images | ||
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) | ||
# download(urls, dir=dir, delete=False) | ||
# Convert labels | ||
convert_labels(dir / 'xView_train.geojson') | ||
# Move images | ||
images = Path(dir / 'images') | ||
images.mkdir(parents=True, exist_ok=True) | ||
Path(dir / 'train_images').rename(dir / 'images' / 'train') | ||
Path(dir / 'val_images').rename(dir / 'images' / 'val') | ||
# Split | ||
autosplit(dir / 'images' / 'train') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters