Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New performance profiler and updates to test data generation #110

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,14 @@ poetry run pytest

Ensure you have `pytest` defined as a development dependency in your `pyproject.toml`.

If running on legacy CPUs and the tests crash on the polars library, run the following locally only:

```bash
poetry add polars-lts-cpu
```

This will align the polars execution with your system hardware. It should NOT be committed back into the repository.

## License

This project is licensed under the MIT License - see the `LICENSE` file for details.
2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ python-magic = "*"
pyyaml = "*"
requests = "*"
pandera = "^0.16"
polars = "^0.20.3"
ddt = "^1.7.1"

[tool.poetry.group.dev.dependencies]
black = {extras = ["d"], version = "^23.7.0"}
Expand Down
1,001 changes: 0 additions & 1,001 deletions tests/fake_focuses.csv

This file was deleted.

47 changes: 0 additions & 47 deletions tests/focus_validator_performance_test.py

This file was deleted.

290 changes: 60 additions & 230 deletions tests/samples/csv_random_data_generate_at_scale.py
Original file line number Diff line number Diff line change
@@ -1,250 +1,80 @@
from concurrent.futures import ThreadPoolExecutor
import csv
import functools
import io
import logging
import polars as pl
from faker import Faker
import random
import time
import pytz
from datetime import datetime, timedelta
from faker import Faker
import pytz
import logging
import time

fake = Faker()

def get_aws_invoice_issuer(num_records):
aws_entities = [
'AWS Inc.', 'Amazon Web Services', 'AWS Marketplace',
'Amazon Data Services', 'AWS CloudFront', 'Amazon S3 Billing',
'Amazon EC2 Billing', 'AWS Lambda Billing'
]
return [random.choice(aws_entities) for _ in range(num_records)]

# ... similar functions for other non-date attributes ...

def get_random_datetimes(num_records, start_date, end_date):
return [fake.date_time_between(start_date=start_date, end_date=end_date, tzinfo=pytz.utc).strftime('%Y-%m-%dT%H:%M:%SZ') for _ in range(num_records)]

def log_execution_time(func):
"""Decorator to log the execution time of a function."""

@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
logging.info(f"{func.__name__} executed in {end_time - start_time:.2f} seconds")
return result

return wrapper

class FakeFocus:

def __init__(self):
self._cache = {}

# Current time in UTC
now = datetime.now(pytz.utc)

# 30 days ago from now
thirty_days_ago = now - timedelta(days=30)

@property
def InvoiceIssuer(self):
return self._cached_property('InvoiceIssuer', self.get_aws_invoice_issuer)

@property
def ResourceID(self):
return self._cached_property('ResourceID', fake.uuid4)

@property
def ChargeType(self):
return self._cached_property('ChargeType', self.get_charge_type)

@property
def Provider(self):
return self._cached_property('Provider', fake.company)

@property
def BillingAccountName(self):
return self._cached_property('BillingAccountName', fake.company)

@property
def SubAccountName(self):
# Only generate a new datetime when it's not in cache
if 'SubAccountName' not in self._cache:
# Generate a random datetime object within the last 30 days
random_datetime = fake.date_time_between(start_date=self.thirty_days_ago, end_date=self.now, tzinfo=pytz.utc)
formatted_date = datetime.strftime(random_datetime, '%Y-%m-%dT%H:%M:%SZ')
self._cache['SubAccountName'] = formatted_date

return self._cache['SubAccountName']

@property
def BillingAccountId(self):
return self._cached_property('BillingAccountId', fake.uuid4)

@property
def Publisher(self):
return self._cached_property('Publisher', self.get_aws_publisher)

@property
def ResourceName(self):
return self._cached_property('ResourceName', self.get_aws_resource_name)

@property
def ServiceName(self):
return self._cached_property('ServiceName', self.get_aws_service_name)

@property
def BilledCurrency(self):
return self._cached_property('BilledCurrency', lambda: 'USD')

@property
def BillingPeriodEnd(self):
# Only generate a new datetime when it's not in cache
if 'BillingPeriodEnd' not in self._cache:
# Generate a random datetime object within the last 30 days
random_datetime = fake.date_time_between(start_date=self.thirty_days_ago, end_date=self.now, tzinfo=pytz.utc)
formatted_date = datetime.strftime(random_datetime, '%Y-%m-%dT%H:%M:%SZ')
self._cache['BillingPeriodEnd'] = formatted_date

return self._cache['BillingPeriodEnd']

@property
def BillingPeriodStart(self):
# Only generate a new datetime when it's not in cache
if 'BillingPeriodStart' not in self._cache:
# Generate a random datetime object within the last 30 days
random_datetime = fake.date_time_between(start_date=self.thirty_days_ago, end_date=self.now, tzinfo=pytz.utc)
formatted_date = datetime.strftime(random_datetime, '%Y-%m-%dT%H:%M:%SZ')
self._cache['BillingPeriodStart'] = formatted_date

return self._cache['BillingPeriodStart']

@property
def Region(self):
return self._cached_property('Region', self.get_aws_region)

@property
def ServiceCategory(self):
return self._cached_property('ServiceCategory', self.get_aws_service_category)

@property
def ChargePeriodStart(self):
# Only generate a new datetime when it's not in cache
if 'ChargePeriodStart' not in self._cache:
# Generate a random datetime object within the last 30 days
random_datetime = fake.date_time_between(start_date=self.thirty_days_ago, end_date=self.now, tzinfo=pytz.utc)
formatted_date = datetime.strftime(random_datetime, '%Y-%m-%dT%H:%M:%SZ')
self._cache['ChargePeriodStart'] = formatted_date

return self._cache['ChargePeriodStart']

@property
def ChargePeriodEnd(self):
# Only generate a new datetime when it's not in cache
if 'ChargePeriodEnd' not in self._cache:
# Generate a random datetime object within the last 30 days
random_datetime = fake.date_time_between(start_date=self.thirty_days_ago, end_date=self.now, tzinfo=pytz.utc)
formatted_date = datetime.strftime(random_datetime, '%Y-%m-%dT%H:%M:%SZ')
self._cache['ChargePeriodEnd'] = formatted_date

return self._cache['ChargePeriodEnd']

@property
def BilledCost(self):
return self._cached_property('BilledCost', lambda: fake.pyfloat(left_digits=3, right_digits=2, positive=True))

@property
def AmortizedCost(self):
return self._cached_property('AmortizedCost', lambda: fake.pyfloat(left_digits=3, right_digits=2, positive=True))

def _cached_property(self, prop_name, generator_func):
if prop_name not in self._cache:
self._cache[prop_name] = generator_func()
return self._cache[prop_name]

def to_dict(self):
return {
'InvoiceIssuer': self.InvoiceIssuer,
'ResourceID': self.ResourceID,
'ChargeType': self.ChargeType,
'Provider': self.Provider,
'BillingAccountName': self.BillingAccountName,
'SubAccountName': self.SubAccountName,
'BillingAccountId': self.BillingAccountId,
'Publisher': self.Publisher,
'ResourceName': self.ResourceName,
'ServiceName': self.ServiceName,
'BilledCurrency': self.BilledCurrency,
'BillingPeriodEnd': self.BillingPeriodEnd,
'BillingPeriodStart': self.BillingPeriodStart,
'Region': self.Region,
'ServiceCategory': self.ServiceCategory,
'ChargePeriodStart': self.ChargePeriodStart,
'ChargePeriodEnd': self.ChargePeriodEnd,
'BilledCost': self.BilledCost,
'AmortizedCost': self.AmortizedCost
}


def get_aws_invoice_issuer(self):
aws_entities = [
'AWS Inc.', 'Amazon Web Services', 'AWS Marketplace',
'Amazon Data Services', 'AWS CloudFront', 'Amazon S3 Billing',
'Amazon EC2 Billing', 'AWS Lambda Billing'
]
return str(random.choice(aws_entities))

def get_charge_type(self):
aws_entities = [
'Adjustment', 'Purchase', 'Tax',
'Usage'
]
return str(random.choice(aws_entities))

def get_aws_publisher(self):
publisher_types = ['Software', 'Service', 'Platform']
publisher_suffix = random.choice(['Inc.', 'LLC', 'Ltd.', 'Group', 'Technologies', 'Solutions'])
return f"{fake.company()} {random.choice(publisher_types)} {publisher_suffix}"

def get_aws_resource_name(self):
resource_types = ['i-', 'vol-', 'snap-', 'ami-', 'bucket-', 'db-']
resource_prefix = random.choice(resource_types)
resource_id = fake.hexify(text='^^^^^^^^', upper=False)
return f'{resource_prefix}{resource_id}'

def get_aws_service_category(self):
aws_service_categories = [
'AI and Machine Learning', 'Analytics', 'Business Applications', 'Compute', 'Databases', 'Developer Tools', 'Multicloud',
'Identity', 'Integration', 'Internet of Things', 'Management and Governance', 'Media', 'Migration', 'Mobile', 'Networking',
'Security', 'Storage', 'Web', 'Other'
]
return random.choice(aws_service_categories)

def get_aws_service_name(self):
aws_services = [
'Amazon EC2', 'Amazon S3', 'AWS Lambda', 'Amazon RDS',
'Amazon DynamoDB', 'Amazon VPC', 'Amazon Route 53',
'Amazon CloudFront', 'AWS Elastic Beanstalk', 'Amazon SNS',
'Amazon SQS', 'Amazon Redshift', 'AWS CloudFormation',
'AWS IAM', 'Amazon EBS', 'Amazon ECS', 'Amazon EKS',
'Amazon ElastiCache', 'AWS Fargate', 'AWS Glue'
]
return random.choice(aws_services)

def get_aws_region(self):
aws_regions = [
'us-east-1', 'us-west-1', 'us-west-2', 'eu-west-1', 'eu-central-1',
'ap-southeast-1', 'ap-southeast-2', 'ap-northeast-1', 'ap-northeast-2',
'ap-south-1', 'sa-east-1', 'ca-central-1', 'eu-north-1', 'eu-west-2',
'eu-west-3', 'ap-east-1', 'me-south-1', 'af-south-1', 'eu-south-1'
]
return random.choice(aws_regions)

def generate_fake_focus():
return FakeFocus()

def write_focus_to_csv(focus, csv_writer):
csv_writer.writerow(focus.to_dict())

@log_execution_time
def generate_and_write_fake_focuses(csv_filename, num_records):
headers = FakeFocus().to_dict().keys()

with open(csv_filename, 'w', newline='') as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=headers)
csv_writer.writeheader()
now = datetime.now(pytz.utc)
thirty_days_ago = now - timedelta(days=30)

with ThreadPoolExecutor() as executor:
futures = [executor.submit(generate_fake_focus) for _ in range(num_records)]
for future in futures:
focus = future.result()
write_focus_to_csv(focus, csv_writer)
df = pl.DataFrame({
'InvoiceIssuer': [random.choice([ 'AWS Inc.', 'Amazon Web Services', 'AWS Marketplace', 'Amazon Data Services',
'AWS CloudFront', 'Amazon S3 Billing', 'Amazon EC2 Billing', 'AWS Lambda Billing']) for _ in range(num_records)],
'ResourceID': [fake.uuid4() for _ in range(num_records)],
'ChargeType': [random.choice(['Adjustment', 'Purchase', 'Tax', 'Usage']) for _ in range(num_records)],
'Provider': [fake.company() for _ in range(num_records)],
'BillingAccountName': [fake.company() for _ in range(num_records)],
'SubAccountName': get_random_datetimes(num_records, thirty_days_ago, now),
'BillingAccountId': [fake.uuid4() for _ in range(num_records)],
'Publisher': [f"{fake.company()} {random.choice(['Software', 'Service', 'Platform'])} {random.choice(['Inc.', 'LLC', 'Ltd.', 'Group', 'Technologies', 'Solutions'])}" for _ in range(num_records)],
'ResourceName': [f"{random.choice(['i-', 'vol-', 'snap-', 'ami-', 'bucket-', 'db-'])}{fake.hexify(text='^^^^^^^^', upper=False)}" for _ in range(num_records)],
'ServiceName': [random.choice([
'Amazon EC2', 'Amazon S3', 'AWS Lambda', 'Amazon RDS',
'Amazon DynamoDB', 'Amazon VPC', 'Amazon Route 53',
'Amazon CloudFront', 'AWS Elastic Beanstalk', 'Amazon SNS',
'Amazon SQS', 'Amazon Redshift', 'AWS CloudFormation',
'AWS IAM', 'Amazon EBS', 'Amazon ECS', 'Amazon EKS',
'Amazon ElastiCache', 'AWS Fargate', 'AWS Glue'
]) for _ in range(num_records)],
'BilledCurrency': ['USD' for _ in range(num_records)],
'BillingPeriodEnd': get_random_datetimes(num_records, thirty_days_ago, now),
'BillingPeriodStart': get_random_datetimes(num_records, thirty_days_ago, now),
'Region': [random.choice([
'us-east-1', 'us-west-1', 'us-west-2', 'eu-west-1', 'eu-central-1',
'ap-southeast-1', 'ap-southeast-2', 'ap-northeast-1', 'ap-northeast-2',
'ap-south-1', 'sa-east-1', 'ca-central-1', 'eu-north-1', 'eu-west-2',
'eu-west-3', 'ap-east-1', 'me-south-1', 'af-south-1', 'eu-south-1'
]) for _ in range(num_records)],
'ServiceCategory': [random.choice([
'AI and Machine Learning', 'Analytics', 'Business Applications', 'Compute', 'Databases', 'Developer Tools', 'Multicloud',
'Identity', 'Integration', 'Internet of Things', 'Management and Governance', 'Media', 'Migration', 'Mobile', 'Networking',
'Security', 'Storage', 'Web', 'Other'
]) for _ in range(num_records)],
'ChargePeriodStart': get_random_datetimes(num_records, thirty_days_ago, now),
'ChargePeriodEnd': get_random_datetimes(num_records, thirty_days_ago, now),
'BilledCost': [fake.pyfloat(left_digits=3, right_digits=2, positive=True) for _ in range(num_records)],
'AmortizedCost': [fake.pyfloat(left_digits=3, right_digits=2, positive=True) for _ in range(num_records)]
})

df.write_csv(csv_filename)
Loading
Loading