Skip to content

Commit

Permalink
Merge pull request #2439 from flairNLP/fine-tune
Browse files Browse the repository at this point in the history
Add fine-tune presets to ModelTrainer
  • Loading branch information
alanakbik authored Sep 16, 2021
2 parents e94d530 + e86ac99 commit 911d9d6
Show file tree
Hide file tree
Showing 6 changed files with 124 additions and 227 deletions.
120 changes: 0 additions & 120 deletions flair/optim.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,126 +136,6 @@ def step(self, closure=None):
return loss


class AdamW(Optimizer):
r"""Implements AdamW optimizer.
Adam has been proposed in `Adam\: A Method for Stochastic Optimization`_.
AdamW uses the weight decay method from the paper
`Fixing Weight Decay Regularization in Adam`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay factor (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _Fixing Weight Decay Regularization in Adam:
https://arxiv.org/abs/1711.05101
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""

def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad
)
super(AdamW, self).__init__(params, defaults)

def __setstate__(self, state):
super(AdamW, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("amsgrad", False)

def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()

for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
"Adam does not support sparse gradients, please consider SparseAdam instead"
)
amsgrad = group["amsgrad"]

state = self.state[p]

# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state["max_exp_avg_sq"] = torch.zeros_like(p.data)

exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
if amsgrad:
max_exp_avg_sq = state["max_exp_avg_sq"]
beta1, beta2 = group["betas"]

state["step"] += 1

# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group["eps"])
else:
denom = exp_avg_sq.sqrt().add_(group["eps"])

bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1

if group["weight_decay"] != 0:
p.data.add_(-group["weight_decay"], p.data)

p.data.addcdiv_(-step_size, exp_avg, denom)

return loss


class ExpAnnealLR(_LRScheduler):
"""Exponentially anneal the learning rate of each parameter group
from the initial lr to end_lr over a number of iterations.
Expand Down
1 change: 1 addition & 0 deletions flair/trainers/language_model_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from typing import Union

from torch import cuda
from torch.optim import AdamW
from torch.utils.data import Dataset, DataLoader
from torch.optim.sgd import SGD

Expand Down
Loading

0 comments on commit 911d9d6

Please sign in to comment.