Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion include/flashinfer/attention/scheduler.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -1134,7 +1134,8 @@ inline cudaError_t MLAPlan(void* float_buffer, size_t float_workspace_size_in_by
qo_indptr_h[i] * num_heads +
std::min((qo_tile_idx + 1) * cluster_tile_q, packed_qo_len);
}
while (remaining_len > 0) {
bool zero_kv_len = (remaining_len == 0);
while (remaining_len > 0 || zero_kv_len) {
auto [cluster_idx, accum_cost] = cluster_cost_heap.pop();
int actual_len = std::min(remaining_len, kv_len_limit);
cluster_cost_heap.insert(
Expand All @@ -1154,6 +1155,7 @@ inline cudaError_t MLAPlan(void* float_buffer, size_t float_workspace_size_in_by
cluster_kv_end[cluster_idx].push_back(kv_start + actual_len);
remaining_len -= actual_len;
kv_start += actual_len;
if (zero_kv_len) break;
}
split_kv_count += int(split_kv);
}
Expand Down
5 changes: 3 additions & 2 deletions tests/test_deepseek_mla.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,7 @@ def generate_kv_from_cache(ckv, kpe, kv_len, batch_size, num_heads):


@pytest.mark.parametrize("batch_size", [1, 17, 37])
@pytest.mark.parametrize("kv_len", [17, 33, 96, 97, 114, 514, 1024])
@pytest.mark.parametrize("kv_len", [0, 17, 33, 96, 97, 114, 514, 1024])
@pytest.mark.parametrize("qo_len", [1, 17, 37, 77])
@pytest.mark.parametrize("num_heads", [4, 32, 128])
@pytest.mark.parametrize("causal", [False, True])
Expand Down Expand Up @@ -243,7 +243,8 @@ def test_batch_mla_page_attention(
o_ref, lse_ref = attention_ref(batch_size, q, k, v, causal, sm_scale)
lse_ref = lse_ref.flatten(0, 1)
torch.testing.assert_close(o, o_ref, rtol=1e-3, atol=1e-3)
torch.testing.assert_close(lse, lse_ref, rtol=1e-3, atol=1e-3)
if kv_len != 0:
torch.testing.assert_close(lse, lse_ref, rtol=1e-3, atol=1e-3)

# test with pre-allocated output
o_buffer = torch.empty_like(o)
Expand Down