Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add code for MAPLE and for inner-annotator agreement #46

Merged
merged 1 commit into from
Oct 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions analysis/avg_agreement_final.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

data = {
"meta-llama/Meta-Llama-3.1-8B-Instruct": [
0.3533086666014079,
0.052422082615756406
],
"cohere/c4ai-aya-23-35b": [
0.43767196047824003,
0.026040919354464294
],
"cohere/c4ai-aya-23-8b": [
0.013483014909052663,
0.03363706833599835
],
"cohere/command-r-08-2024": [
0.374457668650282,
0.02926089754079793
],
"cohere/command-r-plus-08-2024": [
0.3830841816733316,
0.020185255968455686
],
"google/gemma-1.1-7b-it": [
0.5190375637539242,
0.027757722654111305
],
"google/gemma-2-9b-it": [
0.5181663123111222,
0.031090119385244894
],
"meta-llama/Meta-Llama-3-70B-Instruct": [
0.5685224105896568,
0.04853344616275034
],
"meta-llama/Meta-Llama-3-8B-Instruct": [
0.37936948540837095,
0.032172769265151994
],
"meta-llama/Meta-Llama-3.1-70B-Instruct": [
0.603536768244583,
0.027191895488989915
],
"mistralai/Mistral-7B-Instruct-v0.2": [
0.4071166722276529,
0.04577594028555328
],
"mistralai/Mistral-7B-Instruct-v0.3": [
0.41195018984687265,
0.056184679972755454
],
"openai/gpt-4-turbo-2024-04-09": [
0.6106943361444249,
0.02932446842558468
],
"openai/gpt-4o-2024-05-13": [
0.5833874065757011,
0.023695391445384514
]
}

sorted_data = dict(sorted(data.items(), key=lambda item: item[1][0]))
labels_sorted = list(sorted_data.keys())
means_sorted = [v[0] for v in sorted_data.values()]
std_devs_sorted = [v[1] for v in sorted_data.values()]

sns.set(style="whitegrid")
palette = sns.color_palette("coolwarm", len(labels_sorted))

plt.figure(figsize=(10, 6))
x_pos_sorted = np.arange(len(labels_sorted))

ax1 = sns.barplot(x=x_pos_sorted, y=means_sorted, palette=palette, errorbar=None)
plt.errorbar(x_pos_sorted, means_sorted, yerr=std_devs_sorted, fmt='none', c='black', capsize=5)

ax1.spines['top'].set_color('black')
ax1.spines['right'].set_color('black')
ax1.spines['left'].set_color('black')
ax1.spines['bottom'].set_color('black')
for spine in ax1.spines.values():
spine.set_linewidth(2) # Make the border thicker

plt.ylim(0, 0.8)

plt.xticks(x_pos_sorted, labels_sorted, rotation=90)
plt.ylabel("Cohen's Kappa")
plt.title('Average Inner-Model Agreement Across Languages')

plt.tight_layout()
plt.savefig(f"./innermodel_agreement.pdf", bbox_inches='tight')
101 changes: 101 additions & 0 deletions analysis/maple_results.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
import json
from pathlib import Path

import argparse
import logging
from pathlib import Path
from typing import Optional

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from huggingface_hub import snapshot_download
import datasets
import json

import numpy as np
import matplotlib.pyplot as plt
from itertools import combinations
from collections import defaultdict


FONT_SIZES = {"small": 12, "medium": 16, "large": 18}

PLOT_PARAMS = {
"font.family": "serif",
"font.serif": ["Times New Roman", "STIX"],
"font.size": FONT_SIZES.get("medium"),
"axes.titlesize": FONT_SIZES.get("large"),
"axes.labelsize": FONT_SIZES.get("large"),
"xtick.labelsize": FONT_SIZES.get("large"),
"ytick.labelsize": FONT_SIZES.get("small"),
"legend.fontsize": FONT_SIZES.get("medium"),
"figure.titlesize": FONT_SIZES.get("medium"),
"text.usetex": False,
}

logging.basicConfig(level=logging.INFO)

plt.rcParams.update(PLOT_PARAMS)

def load_json(json_file_path):
with open(json_file_path, "r") as file:
json_data = json.load(file)
return json_data

results_dir = 'data/eval-results-maple'
results_path = Path(results_dir)

results_all = []
for result_file in results_path.glob("*.json"):
raw_results = load_json(result_file)
if "leaderboard" in raw_results.keys():
model_id = raw_results["model"]
subset_results = raw_results['subset']
overall = raw_results['scores']['accuracy']
remove_key = ['model', 'model_type', 'chat_template']
for key in remove_key:
del subset_results[key]
elif "subset_results" in raw_results.keys():
model_id = raw_results["model"]
subset_results = raw_results['subset_results']
overall = raw_results['accuracy']
else:
model_id = raw_results["model"]
subset_results = raw_results['extra_results']
overall = raw_results['accuracy']
# print(model_id, overall)
# print("\t", subset_results)
# results_all.append([model_id, overall, subset_results])
results_all.append({'Model': model_id, 'Avg': overall, **subset_results})

# import ipdb; ipdb.set_trace()

TOP = 10
# results_all.sort(key=lambda x: x[1], reverse=True)
# results_all = results_all[:TOP]
# print(results_all)

df_results = pd.DataFrame(results_all)
df_results = df_results.sort_values(by='Avg', ascending=False).reset_index(drop=True)
df_results = df_results.head(10).reset_index(drop=True)

df_results.columns = df_results.columns.str.replace('^maple-', '', regex=True)
df_results = df_results.set_index("Model")
df_results = df_results * 100
fig, ax = plt.subplots(1, 1, figsize=(18, 5))

sns.heatmap(df_results, ax=ax, cmap="YlGn", annot=True, annot_kws={"size": 16},
fmt=".1f", cbar=False)

ax.xaxis.set_ticks_position("top")
ax.tick_params(axis="x", labelrotation=45)
ax.set_ylabel("")
ax.set_yticklabels([f"{model} " for model in df_results.index])

plt.tight_layout()

plt.savefig("plots/maple.pdf", bbox_inches="tight")
# import ipdb; ipdb.set_trace()