Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add routines for saving/loading arrays in npy format #581

Merged
merged 10 commits into from
Dec 6, 2021
88 changes: 86 additions & 2 deletions doc/specs/stdlib_io.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ program demo_loadtxt
use stdlib_io, only: loadtxt
implicit none
real, allocatable :: x(:,:)
call loadtxt('example.dat', x)
call loadtxt('example.dat', x)
end program demo_loadtxt
```

Expand Down Expand Up @@ -128,6 +128,90 @@ program demo_savetxt
use stdlib_io, only: savetxt
implicit none
real :: x(3,2) = 1
call savetxt('example.dat', x)
call savetxt('example.dat', x)
end program demo_savetxt
```


## `load_npy`

### Status

Experimental

### Description

Loads am `array` from a npy formatted binary file.
awvwgk marked this conversation as resolved.
Show resolved Hide resolved

### Syntax

`call [[stdlib_io_npy(module):load_npy(interface)]](filename, array[, iostat][, iomsg])`

### Arguments
awvwgk marked this conversation as resolved.
Show resolved Hide resolved

`filename`: Shall be a character expression containing the file name from which to load the `array`.

`array`: Shall be an allocatable array of any rank of type `real`, `complex` or `integer`.

`iostat`: Default integer, contains status of loading to file, zero in case of success.
Optional argument, in case not present the program will halt for non-zero status.

`iomsg`: Deferred length character value, contains error message in case `iostat` is non-zero.
Optional argument, error message will be dropped if not present.

### Return value

Returns an allocated `array` with the content of `filename` in case of success.

### Example

```fortran
program demo_loadtxt
use stdlib_io_npy, only: load_npy
implicit none
real, allocatable :: x(:,:)
call loadtxt('example.npy', x)
end program demo_loadtxt
```


## `save_npy`

### Status

Experimental

### Description

Saves an `array` into a npy formatted binary file.

### Syntax

`call [[stdlib_io_npy(module):save_npy(interface)]](filename, array[, iostat][, iomsg])`

### Arguments

`filename`: Shall be a character expression containing the name of the file that will contain the `array`.

`array`: Shall be an array of any rank of type `real`, `complex` or `integer`.

`iostat`: Default integer, contains status of saving to file, zero in case of success.
Optional argument, in case not present the program will halt for non-zero status.
awvwgk marked this conversation as resolved.
Show resolved Hide resolved

`iomsg`: Deferred length character value, contains error message in case `iostat` is non-zero.
Optional argument, error message will be dropped if not present.
awvwgk marked this conversation as resolved.
Show resolved Hide resolved

### Output

Provides a text file called `filename` that contains the rank-2 `array`.
awvwgk marked this conversation as resolved.
Show resolved Hide resolved

### Example

```fortran
program demo_savetxt
use stdlib_io_npy, only: save_npy
implicit none
real :: x(3,2) = 1
call save_npy('example.npy', x)
end program demo_savetxt
```
3 changes: 3 additions & 0 deletions src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,9 @@ set(fppFiles
stdlib_bitsets_64.fypp
stdlib_bitsets_large.fypp
stdlib_io.fypp
stdlib_io_npy.fypp
stdlib_io_npy_load.fypp
stdlib_io_npy_save.fypp
stdlib_kinds.fypp
stdlib_linalg.fypp
stdlib_linalg_diag.fypp
Expand Down
13 changes: 13 additions & 0 deletions src/Makefile.manual
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@ SRCFYPP = \
stdlib_bitsets_large.fypp \
stdlib_bitsets.fypp \
stdlib_io.fypp \
stdlib_io_npy.fypp \
stdlib_io_npy_load.fypp \
stdlib_io_npy_save.fypp \
stdlib_kinds.fypp \
stdlib_linalg.fypp \
stdlib_linalg_diag.fypp \
Expand Down Expand Up @@ -87,6 +90,16 @@ stdlib_io.o: \
stdlib_optval.o \
stdlib_kinds.o \
stdlib_ascii.o
stdlib_io_npy.o: \
stdlib_kinds.o
stdlib_io_npy_load.o: \
stdlib_io_npy.o \
stdlib_error.o \
stdlib_strings.o
stdlib_io_npy_save.o: \
stdlib_io_npy.o \
stdlib_error.o \
stdlib_strings.o
stdlib_linalg.o: \
stdlib_kinds.o
stdlib_linalg_diag.o: \
Expand Down
120 changes: 120 additions & 0 deletions src/stdlib_io_npy.fypp
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
! SPDX-Identifer: MIT

#:include "common.fypp"
#:set RANKS = range(1, MAXRANK + 1)
#:set KINDS_TYPES = REAL_KINDS_TYPES + INT_KINDS_TYPES + CMPLX_KINDS_TYPES

!> Description of the npy format taken from
!> https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html
!>
!>## Format Version 1.0
!>
!> The first 6 bytes are a magic string: exactly \x93NUMPY.
!>
!> The next 1 byte is an unsigned byte:
!> the major version number of the file format, e.g. \x01.
!>
!> The next 1 byte is an unsigned byte:
!> the minor version number of the file format, e.g. \x00.
!> Note: the version of the file format is not tied to the version of the numpy package.
!>
!> The next 2 bytes form a little-endian unsigned short int:
!> the length of the header data HEADER_LEN.
!>
!> The next HEADER_LEN bytes form the header data describing the array’s format.
!> It is an ASCII string which contains a Python literal expression of a dictionary.
!> It is terminated by a newline (\n) and padded with spaces (\x20) to make the total
!> of len(magic string) + 2 + len(length) + HEADER_LEN be evenly divisible by 64 for
!> alignment purposes.
!>
!> The dictionary contains three keys:
!>
!> - “descr”: dtype.descr
!> An object that can be passed as an argument to the numpy.dtype constructor
!> to create the array’s dtype.
!>
!> - “fortran_order”: bool
!> Whether the array data is Fortran-contiguous or not. Since Fortran-contiguous
!> arrays are a common form of non-C-contiguity, we allow them to be written directly
!> to disk for efficiency.
!>
!> - “shape”: tuple of int
!> The shape of the array.
!>
!> For repeatability and readability, the dictionary keys are sorted in alphabetic order.
!> This is for convenience only. A writer SHOULD implement this if possible. A reader MUST
!> NOT depend on this.
!>
!> Following the header comes the array data. If the dtype contains Python objects
!> (i.e. dtype.hasobject is True), then the data is a Python pickle of the array.
!> Otherwise the data is the contiguous (either C- or Fortran-, depending on fortran_order)
!> bytes of the array. Consumers can figure out the number of bytes by multiplying the
!> number of elements given by the shape (noting that shape=() means there is 1 element)
!> by dtype.itemsize.
!>
!>## Format Version 2.0
!>
!> The version 1.0 format only allowed the array header to have a total size of 65535 bytes.
!> This can be exceeded by structured arrays with a large number of columns.
!> The version 2.0 format extends the header size to 4 GiB. numpy.save will automatically
!> save in 2.0 format if the data requires it, else it will always use the more compatible
!> 1.0 format.
!>
!> The description of the fourth element of the header therefore has become:
!> “The next 4 bytes form a little-endian unsigned int: the length of the header data
!> HEADER_LEN.”
!>
!>## Format Version 3.0
!>
!> This version replaces the ASCII string (which in practice was latin1) with a
!> utf8-encoded string, so supports structured types with any unicode field names.
module stdlib_io_npy
use stdlib_kinds, only : int8, int16, int32, int64, sp, dp, xdp, qp
implicit none
private

public :: save_npy, load_npy


!> Save multidimensional array in npy format
awvwgk marked this conversation as resolved.
Show resolved Hide resolved
interface save_npy
#:for k1, t1 in KINDS_TYPES
#:for rank in RANKS
module subroutine save_npy_${t1[0]}$${k1}$_${rank}$(filename, array, iostat, iomsg)
character(len=*), intent(in) :: filename
${t1}$, intent(in) :: array${ranksuffix(rank)}$
integer, intent(out), optional :: iostat
character(len=:), allocatable, intent(out), optional :: iomsg
end subroutine save_npy_${t1[0]}$${k1}$_${rank}$
#:endfor
#:endfor
end interface save_npy

!> Load multidimensional array in npy format
interface load_npy
#:for k1, t1 in KINDS_TYPES
#:for rank in RANKS
module subroutine load_npy_${t1[0]}$${k1}$_${rank}$(filename, array, iostat, iomsg)
character(len=*), intent(in) :: filename
${t1}$, allocatable, intent(out) :: array${ranksuffix(rank)}$
integer, intent(out), optional :: iostat
character(len=:), allocatable, intent(out), optional :: iomsg
end subroutine load_npy_${t1[0]}$${k1}$_${rank}$
#:endfor
#:endfor
end interface load_npy


character(len=*), parameter :: nl = achar(10)

character(len=*), parameter :: &
type_iint8 = "<i1", type_iint16 = "<i2", type_iint32 = "<i4", type_iint64 = "<i8", &
type_rsp = "<f4", type_rdp = "<f8", type_rxdp = "<f10", type_rqp = "<f16", &
type_csp = "<c8", type_cdp = "<c16", type_cxdp = "<c20", type_cqp = "<c32"

character(len=*), parameter :: &
& magic_number = char(int(z"93")), &
& magic_string = "NUMPY"


end module stdlib_io_npy
Loading