Skip to content

francois-rozet/mmps-benchmark

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MMPS Benchmark

This fork of the official DPS repository is adapted to benchmark diffusion posterior sampling algorithms, including DPS, PiGDM, TMPD and DiffPIR against MMPS.

Getting started

  1. Clone the repository and its dependencies

    git clone https://github.com/francois-rozet/mmps-benchmark
    cd mmps-benchmark
    git clone https://github.com/VinAIResearch/blur-kernel-space-exploring bkse
    git clone https://github.com/LeviBorodenko/motionblur motionblur
    
  2. Install the Python dependencies

    pip install torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu121
    pip install -r requirements.txt
    
  3. Download a checkpoint from link and place it into ./models

    mkdir models
    mv ffhq_10m.pt ./models
    
  4. Run an experiment

    python run.py \
    --model-config ./configs/model_ffhq_config.yaml \
    --task-config ./configs/tasks/inpainting_random_config.yaml \
    --method mmps --steps 100 --maxiter 5 \
    --seed 42 \
    

    The generated images are saved in /results and the metrics are written in metrics.csv.

About

MMPS Benchmark

Resources

Stars

Watchers

Forks

Languages

  • Python 85.6%
  • Jupyter Notebook 13.1%
  • Shell 1.3%