-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
✨ Mean Deviation Similarity Index (MDSI)
- Loading branch information
1 parent
3d1fd4c
commit e79b340
Showing
2 changed files
with
190 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
r"""Mean Deviation Similarity Index (MDSI) | ||
This module implements the MDSI in PyTorch. | ||
References: | ||
[1] Mean Deviation Similarity Index: | ||
Efficient and Reliable Full-Reference Image Quality Evaluator | ||
(Nafchi et al., 2016) | ||
https://arxiv.org/abs/1608.07433 | ||
""" | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from spiq.utils import build_reduce, prewitt_kernel, gradient2d, tensor_norm | ||
|
||
_LHM_WEIGHTS = torch.FloatTensor([ | ||
[0.2989, 0.587, 0.114], | ||
[0.3, 0.04, -0.35], | ||
[0.34, -0.6, 0.17], | ||
]) | ||
|
||
|
||
def mdsi( | ||
x: torch.Tensor, | ||
y: torch.Tensor, | ||
value_range: float = 1., | ||
combine: str = 'sum', | ||
c1: float = 0.00215, # 140. / (255. ** 2) | ||
c2: float = 0.00085, # 55. / (255. ** 2) | ||
c3: float = 0.00846, # 550. / (255. ** 2) | ||
alpha: float = 0.6, | ||
beta: float = 0.1, | ||
gamma: float = 0.2, | ||
rho: float = 1., | ||
q: float = 0.25, | ||
o: float = 0.25, | ||
) -> torch.Tensor: | ||
r"""Returns the MDSI between `x` and `y`. | ||
Args: | ||
x: An input tensor, (N, 3, H, W). | ||
y: A target tensor, (N, 3, H, W). | ||
value_range: The value range of the inputs (usually 1. or 255). | ||
combine: The combination scheme of the gradient similarity (GS) and | ||
the chromaticity similarity (CS) (`'sum'` or `'prod'`). | ||
For the remaining arguments, refer to [1]. | ||
""" | ||
|
||
_, _, h, w = x.size() | ||
|
||
# Downsample | ||
M = max(1, min(h, w) // 256) | ||
padding = (0, M - (w - 1 % M) + 1, 0, M - (h - 1 % M) + 1) | ||
|
||
if sum(padding) > 0: | ||
x = F.pad(x, pad=padding) | ||
y = F.pad(y, pad=padding) | ||
|
||
x = F.avg_pool2d(x, kernel_size=M) | ||
y = F.avg_pool2d(y, kernel_size=M) | ||
|
||
# RGB to LHM | ||
lhm_weights = _LHM_WEIGHTS.to(x.device).view(3, 3, 1, 1) | ||
lhm_weights /= value_range | ||
|
||
x = F.conv2d(x, lhm_weights) | ||
y = F.conv2d(y, lhm_weights) | ||
|
||
# Gradient magnitude | ||
kernel = prewitt_kernel() | ||
kernel = torch.stack([kernel, kernel.t()]).unsqueeze(1).to(x.device) | ||
|
||
gm_x = tensor_norm(gradient2d(x[:, :1], kernel), dim=1) | ||
gm_y = tensor_norm(gradient2d(y[:, :1], kernel), dim=1) | ||
gm_avg = tensor_norm(gradient2d((x + y)[:, :1] / 2., kernel), dim=1) | ||
|
||
gm_x_sq, gm_y_sq, gm_avg_sq = gm_x ** 2, gm_y ** 2, gm_avg ** 2 | ||
|
||
# Gradient similarity | ||
gs_x_y = (2. * gm_x * gm_y + c1) / (gm_x_sq + gm_y_sq + c1) | ||
gs_x_avg = (2. * gm_x * gm_avg + c2) / (gm_x_sq + gm_avg_sq + c2) | ||
gs_y_avg = (2. * gm_y * gm_avg + c2) / (gm_y_sq + gm_avg_sq + c2) | ||
|
||
gs = gs_x_y + gs_x_avg - gs_y_avg | ||
|
||
# Chromaticity similarity | ||
cs_num = 2. * (x[:, 1:] * y[:, 1:]).sum(1) + c3 | ||
cs_den = (x[:, 1:] ** 2 + y[:, 1:] ** 2).sum(1) + c3 | ||
cs = cs_num / cs_den | ||
|
||
# Gradient-chromaticity similarity | ||
gs, cs = gs.type(torch.cfloat), cs.type(torch.cfloat) | ||
|
||
if combine == 'prod': | ||
gcs = (gs ** gamma) * (cs ** beta) | ||
else: # combine == 'sum' | ||
gcs = alpha * gs + (1. - alpha) * cs | ||
|
||
# Mean deviation similarity | ||
gcs_q = gcs ** q | ||
score = (gcs_q - gcs_q.mean((-1, -2), keepdim=True)).abs() | ||
mds = (score ** rho).mean((-1, -2)) ** (o / rho) | ||
|
||
return mds | ||
|
||
|
||
class MDSI(nn.Module): | ||
r"""Creates a criterion that measures the MDSI | ||
between an input and a target. | ||
Args: | ||
reduction: A reduction type (`'mean'`, `'sum'` or `'none'`). | ||
`**kwargs` are transmitted to `mdsi`. | ||
Call: | ||
The input and target tensors should be of shape (N, 3, H, W). | ||
""" | ||
|
||
def __init__(self, reduction: str = 'mean', **kwargs): | ||
super().__init__() | ||
|
||
self.reduce = build_reduce(reduction) | ||
self.kwargs = kwargs | ||
|
||
def forward( | ||
self, | ||
input: torch.Tensor, | ||
target: torch.Tensor, | ||
) -> torch.Tensor: | ||
l = mdsi(input, target, **self.kwargs) | ||
|
||
return self.reduce(l) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters