forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【NPU】Support NPU kernel for reduce_sum op v2 (PaddlePaddle#31620)
* add reduce_sum * fix broadcastd * fix test * fix * add unsqueeze in reduce_sum * add template * add unittest for keep_dim * test reduce_all Co-authored-by: frankwhzhang <frankwhzhang@126.com>
- Loading branch information
1 parent
1f4a044
commit 14f23be
Showing
2 changed files
with
307 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <memory> | ||
#include <string> | ||
|
||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
#include "paddle/fluid/operators/reduce_ops/reduce_op.h" | ||
#include "paddle/fluid/operators/unsqueeze_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename DeviceContext, typename T> | ||
class ReduceSumNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<framework::Tensor>("X"); | ||
auto* out = ctx.Output<framework::Tensor>("Out"); | ||
bool reduce_all = ctx.Attr<bool>("reduce_all"); | ||
bool keep_dims = ctx.Attr<bool>("keep_dim"); | ||
auto dims = ctx.Attr<std::vector<int>>("dim"); | ||
|
||
out->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
if (reduce_all) { | ||
std::vector<int> dim_vec; | ||
for (int i = 0; i < x->dims().size(); i++) { | ||
dim_vec.push_back(i); | ||
} | ||
auto runner = NpuOpRunner("ReduceSumD", {*x}, {*out}, | ||
{{"axes", dim_vec}, {"keep_dims", keep_dims}}); | ||
runner.Run(stream); | ||
|
||
} else { | ||
auto runner = NpuOpRunner("ReduceSumD", {*x}, {*out}, | ||
{{"axes", dims}, {"keep_dims", keep_dims}}); | ||
runner.Run(stream); | ||
} | ||
} | ||
}; | ||
|
||
template <typename DeviceContext, typename T> | ||
class ReduceSumGradNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<framework::Tensor>("X"); | ||
auto* out_grad = | ||
ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X")); | ||
bool reduce_all = ctx.Attr<bool>("reduce_all"); | ||
bool keep_dims = ctx.Attr<bool>("keep_dim"); | ||
auto dims = ctx.Attr<std::vector<int>>("dim"); | ||
|
||
x_grad->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
if (keep_dims || reduce_all) { | ||
auto runner = NpuOpRunner("BroadcastToD", {*out_grad}, {*x_grad}, | ||
{{"shape", framework::vectorize(x->dims())}}); | ||
runner.Run(stream); | ||
} else { | ||
framework::DDim out_dims; | ||
out_dims = UnsqueezeKernel<DeviceContext, T>::GetOutputShape( | ||
dims, out_grad->dims()); | ||
|
||
Tensor out_grad_tmp(out_grad->type()); | ||
out_grad_tmp.Resize(out_dims); | ||
out_grad_tmp.mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto runner = NpuOpRunner("BroadcastToD", {out_grad_tmp}, {*x_grad}, | ||
{{"shape", framework::vectorize(x->dims())}}); | ||
runner.Run(stream); | ||
} | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
reduce_sum, | ||
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext, int>, | ||
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); | ||
REGISTER_OP_NPU_KERNEL( | ||
reduce_sum_grad, | ||
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext, int>, | ||
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); |
198 changes: 198 additions & 0 deletions
198
python/paddle/fluid/tests/unittests/npu/test_reduce_sum_op_npu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import unittest | ||
import sys | ||
sys.path.append("..") | ||
from op_test import OpTest | ||
import paddle | ||
import paddle.fluid as fluid | ||
|
||
paddle.enable_static() | ||
SEED = 2021 | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestReduceSum(OpTest): | ||
def setUp(self): | ||
np.random.seed(SEED) | ||
self.set_npu() | ||
self.place = paddle.NPUPlace(0) | ||
self.init_op_type() | ||
self.initTestCase() | ||
|
||
self.use_mkldnn = False | ||
self.attrs = { | ||
'dim': self.axis, | ||
'keep_dim': self.keep_dim, | ||
'reduce_all': self.reduce_all | ||
} | ||
self.inputs = {'X': np.random.random(self.shape).astype("float32")} | ||
if self.attrs['reduce_all']: | ||
self.outputs = {'Out': self.inputs['X'].sum()} | ||
else: | ||
self.outputs = { | ||
'Out': self.inputs['X'].sum(axis=self.axis, | ||
keepdims=self.attrs['keep_dim']) | ||
} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def init_dtype(self): | ||
self.dtype = np.float32 | ||
|
||
def init_op_type(self): | ||
self.op_type = "reduce_sum" | ||
self.use_mkldnn = False | ||
self.keep_dim = False | ||
self.reduce_all = False | ||
|
||
def initTestCase(self): | ||
self.shape = (5, 6) | ||
self.axis = (0, ) | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place, check_dygraph=False) | ||
|
||
# TODO(ascendrc): Add grad test | ||
# def test_check_grad(self): | ||
# if self.dtype == np.float16: | ||
# return | ||
# self.check_grad(['X'], 'Out') | ||
# | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestReduceSumNet(unittest.TestCase): | ||
def set_reduce_sum_function(self, x): | ||
# keep_dim = False | ||
return paddle.fluid.layers.reduce_sum(x, dim=-1) | ||
|
||
def _test(self, run_npu=True): | ||
main_prog = paddle.static.Program() | ||
startup_prog = paddle.static.Program() | ||
main_prog.random_seed = SEED | ||
startup_prog.random_seed = SEED | ||
np.random.seed(SEED) | ||
|
||
a_np = np.random.random(size=(2, 3, 4)).astype('float32') | ||
b_np = np.random.random(size=(2, 3, 4)).astype('float32') | ||
label_np = np.random.randint(2, size=(2, 1)).astype('int64') | ||
|
||
with paddle.static.program_guard(main_prog, startup_prog): | ||
a = paddle.static.data(name="a", shape=[2, 3, 4], dtype='float32') | ||
b = paddle.static.data(name="b", shape=[2, 3, 4], dtype='float32') | ||
label = paddle.static.data( | ||
name="label", shape=[2, 1], dtype='int64') | ||
|
||
z = paddle.add(a, b) | ||
z_1 = self.set_reduce_sum_function(z) | ||
|
||
prediction = fluid.layers.fc(input=z_1, size=2, act='softmax') | ||
|
||
cost = fluid.layers.cross_entropy(input=prediction, label=label) | ||
loss = fluid.layers.reduce_mean(cost) | ||
sgd = fluid.optimizer.SGD(learning_rate=0.01) | ||
sgd.minimize(loss) | ||
|
||
if run_npu: | ||
place = paddle.NPUPlace(0) | ||
else: | ||
place = paddle.CPUPlace() | ||
|
||
exe = paddle.static.Executor(place) | ||
exe.run(startup_prog) | ||
|
||
print("Start run on {}".format(place)) | ||
for epoch in range(100): | ||
|
||
pred_res, loss_res = exe.run( | ||
main_prog, | ||
feed={"a": a_np, | ||
"b": b_np, | ||
"label": label_np}, | ||
fetch_list=[prediction, loss]) | ||
if epoch % 10 == 0: | ||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format( | ||
epoch, pred_res[0], loss_res)) | ||
|
||
return pred_res, loss_res | ||
|
||
def test_npu(self): | ||
cpu_pred, cpu_loss = self._test(False) | ||
npu_pred, npu_loss = self._test(True) | ||
|
||
self.assertTrue(np.allclose(npu_pred, cpu_pred)) | ||
self.assertTrue(np.allclose(npu_loss, cpu_loss)) | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestReduceSumNet2(TestReduceSumNet): | ||
def set_reduce_sum_function(self, x): | ||
# keep_dim = True | ||
return paddle.fluid.layers.reduce_sum(x, dim=-1, keep_dim=True) | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestReduceSumNet3(TestReduceSumNet): | ||
def _test(self, run_npu=True): | ||
main_prog = paddle.static.Program() | ||
startup_prog = paddle.static.Program() | ||
main_prog.random_seed = SEED | ||
startup_prog.random_seed = SEED | ||
np.random.seed(SEED) | ||
|
||
a_np = np.random.random(size=(2, 3, 4)).astype('float32') | ||
b_np = np.random.random(size=(2, 3, 4)).astype('float32') | ||
|
||
with paddle.static.program_guard(main_prog, startup_prog): | ||
a = paddle.static.data(name="a", shape=[2, 3, 4], dtype='float32') | ||
b = paddle.static.data(name="b", shape=[2, 3, 4], dtype='float32') | ||
|
||
z = paddle.add(a, b) | ||
loss = fluid.layers.reduce_sum(z) | ||
sgd = fluid.optimizer.SGD(learning_rate=0.01) | ||
sgd.minimize(loss) | ||
|
||
if run_npu: | ||
place = paddle.NPUPlace(0) | ||
else: | ||
place = paddle.CPUPlace() | ||
|
||
exe = paddle.static.Executor(place) | ||
exe.run(startup_prog) | ||
|
||
print("Start run on {}".format(place)) | ||
for epoch in range(100): | ||
|
||
loss_res = exe.run(main_prog, | ||
feed={"a": a_np, | ||
"b": b_np}, | ||
fetch_list=[loss]) | ||
if epoch % 10 == 0: | ||
print("Epoch {} | Loss: {}".format(epoch, loss_res)) | ||
|
||
return loss_res, loss_res | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |