Skip to content

Commit

Permalink
【NPU】Suppert npu kernel for reshape2 op (PaddlePaddle#31524)
Browse files Browse the repository at this point in the history
* add reshape2 npu

* add reshpe2
  • Loading branch information
frankwhzhang committed Apr 12, 2021
1 parent ad2c58c commit 9d2c9dc
Show file tree
Hide file tree
Showing 2 changed files with 228 additions and 0 deletions.
87 changes: 87 additions & 0 deletions paddle/fluid/operators/reshape2_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class Reshape2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* shape = ctx.Attr<std::vector<int>>> ("shape");
auto* out = ctx.Output<framework::Tensor>("Out");
auto org_shape = framework::vectorize(x->dims());
// reshape
int64_t shape_all = 1;
int64_t org_shape_all = 1;
int index = -1;
for (int i = 0; i < shape.size(); i++) {
if (shape[i] == 0) {
shape[i] = org_shape[i];
}
if (shape[i] == -1) {
index = i;
} else {
shape_all *= shape[i];
}
org_shape_all *= org_shape[i];
}

if (index >= 0) {
shape[index] = org_shape_all / shape_all;
}
out.Resize(framework::make_ddim(shape));
out->mutable_data(ctx.GetPlace(), x->type());
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
out.Resize(framework::make_ddim(shape));
}
};

template <typename DeviceContext, typename T>
class Reshape2GradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto in_dims = d_x->dims();

d_x->mutable_data(ctx.GetPlace(), d_out->type());
framework::TensorCopy(
*d_out, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), d_x);
d_x->Resize(in_dims);
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
reshpe2, ops::Reshape2NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::Reshape2NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
reshpe2_grad,
ops::Reshape2GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::Reshape2GradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
141 changes: 141 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_reshape2_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
SEED = 2021


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReshape2(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "reshape2"
self.place = paddle.NPUPlace(0)

self.init_data()
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
self.attrs = {"shape": self.new_shape}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}

def set_npu(self):
self.__class__.use_npu = True

def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (12, 10)
self.infered_shape = (12, 10)

def test_check_output(self):
self.check_output(
self.place, check_dygraph=False, no_check_set=['XShape'])


class TestReshape2_case2(TestReshape2):
def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (-1, 10)
self.infered_shape = (12, 10)


class TestReshape2_case3(TestReshape2):
def init_data(self):
self.ori_shape = (2, 5, 6)
self.new_shape = (-1, 0, 3)
self.infered_shape = (4, 5, 3)


# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReshapeNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)

a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')

with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')

sum = paddle.add(a, b)
z = paddle.reshape(sum, shape=[32, 32])

fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')

cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)

if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()

exe = paddle.static.Executor(place)
exe.run(startup_prog)

print("Start run on {}".format(place))
for epoch in range(100):

pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))

return pred_res, loss_res

def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)

self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))


if __name__ == '__main__':
unittest.main()

0 comments on commit 9d2c9dc

Please sign in to comment.