Skip to content

Usefull french and english ressources to learn AI

Notifications You must be signed in to change notification settings

french-ai/ressources

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 

Repository files navigation

ressources

🇬🇧 Usefull french and english ressources to learn AI 🇫🇷

Contents :

Deep Learning

Book

  • Deep Learning | Aaron Courville, Ian Goodfellow and Yoshua Bengio | 🇬🇧 🇫🇷 ⭐
  • Deep Learning with Python | François Chollet | 🇬🇧

Video

Blog

Framework

Reinforcement Learning

Book

Video

Blog

Framework

Machine learning

Book

Video

Blog

Framework

Data processing

Book

Video

Blog

Framework

Data Visualization

Book

Video

Blog

Framework

MOAR

Awesome repo

FAQ

Qu'est ce le machine learning ?

Machine learning (apprentissage automatique) est un champ de l'intelligence artificielle. Cela rassemble l'ensemble des méthodes statistiques qui permettent aux machines d'apprendre en fonction de données. Le machine learning fonctionne généralement en deux phases. Une phase d'apprentissage où la machine va apprendre et une phase de restitution où on va pouvoir utiliser le résultat. Ces méthodes peuvent être regroupées en trois groupes d'utilisation.

L'apprentissage supervisé (supervised learning)

L'apprentissage supervisé permet de predire des valeurs en fonction de données d'entrées. Les données sont labellisées, classées ou qualifiées

Classification

La classification est une catégorie de l'apprentissage supervisé qui a pour but de déterminer a quel ensemble les données correspondent. La classification est souvent utilisé pour classer des images

Regression

La régression est une catégorie de l'apprentissage supervisé qui a pour but de déterminer une valeur en fonction de données connues. La régression est souvant utilisé pour réaliser des prédictions.

L’apprentissage non-supervisé (unsupervised learning)

L'apprentissage non-supervisé se base sur la corrélation entre les données d'entrées. Les données sont de même type que pour l'apprentissage supervisé mais elles ne sont ni labellisées, classées ou qualifiées.

Segmentation (clustering)

La segmentation est une catégorie de l'apprentissage non-supervisé qui a pour but de faire resortir des groupes en fonction des ressemblances des données.

Detection d'anomalie (anomaly detection)

La detection d'anomalie est un catégorie de l'apprentissage non-supervisé qui a pour but ne mettre en évidence les données qui sortent de l'ordinaire.

L'apprentissage par renforcement (reinforcement learning)

L'apprentissage par renforcement se base sur la réalisation d'action dans un environnement et l'acquisition de récompense. L'apprentissage par renforcement est souvent utilisé pour la résolution de jeux.

L'apprentissage semi-supervisé (semi-supervised learning)

L'apprentisage semi-supervisé est un mélange entre l'apprentissage supervisé et non-supervisé. Les données sont en partie labéllisées, classées ou qualifiées. L'apprentissage semi-supervisé permet de réaliser des prédictions sur des jeux de données qui ne sont pas entièrement traités.

Qu'est ce qu'une donnée labélisée

Une donnée labélisée est une donnée qui est associée à une autre valeur. Les données classifiées sont utilisées en apprentissage supervisé et semi-supervisé.

Donnée labélisée en classification

En classification, les données sont associées à leurs classes. Si on cherche à savoir si une image représente un chien ou un chat. Chaque image va être associée a "chien" ou "chat".

Les classes sont souvent transformés en chiffre (exemple : "chien" = 0, "chat" = 1), ou en une suite de chiffre (exemple : "chien" = [1,0], "chat" = [0,1]). Cette représentation s'appelle représsentation binaire ("one hot representation" en anglais).

Donnée labélisée en régression

En Régression, les données sont associées à leur valeur. Si on cherche à prédire le prix d'une maison. L'ensemble des données d'une maison va être associé au prix.

Les valeurs sont généralement des nombres réels. Ils peuvent être négatifs et sont souvent encodés en "float" informatique.

About

Usefull french and english ressources to learn AI

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published