Skip to content

fridjon/expr-eval

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JavaScript Expression Evaluator

npm Build Status

Description

Parses and evaluates mathematical expressions. It's a safer and more math-oriented alternative to using JavaScript’s eval function for mathematical expressions.

It has built-in support for common math operators and functions. Additionally, you can add your own JavaScript functions. Expressions can be evaluated directly, or compiled into native JavaScript functions.

Installation

npm install expr-eval

Basic Usage

var Parser = require('expr-eval').Parser;

var parser = new Parser();
var expr = parser.parse('2 * x + 1');
console.log(expr.evaluate({ x: 3 })); // 7

// or
Parser.evaluate('6 * x', { x: 7 }) // 42

Documentation

Parser

Parser is the main class in the library. It has as single parse method, and "static" methods for parsing and evaluating expressions.

Parser()

Constructs a new Parser instance.

parse(expression: string)

Convert a mathematical expression into an Expression object.

Parser.parse(expression: string)

Static equivalent of new Parser().parse(expression).

Parser.evaluate(expression: string, variables?: object)

Parse and immediately evaluate an expression using the values and functions from the variables object.

Parser.evaluate(expr, vars) is equivalent to calling Parser.parse(expr).evaluate(vars).

Expression

Parser.parse(str) returns an Expression object. Expressions are similar to JavaScript functions, i.e. they can be "called" with variables bound to passed-in values. In fact, they can even be converted into JavaScript functions.

evaluate(variables?: object)

Evaluate the expression, with variables bound to the values in {variables}. Each variable in the expression is bound to the corresponding member of the variables object. If there are unbound variables, evaluate will throw an exception.

js> expr = Parser.parse("2 ^ x");
(2^x)
js> expr.evaluate({ x: 3 });
8

substitute(variable: string, expression: Expression | string | number)

Create a new Expression with the specified variable replaced with another expression. This is similar to function composition. If expression is a string or number, it will be parsed into an Expression.

js> expr = Parser.parse("2 * x + 1");
((2*x)+1)
js> expr.substitute("x", "4 * x");
((2*(4*x))+1)
js> expr2.evaluate({ x: 3 });
25

simplify(variables: object)

Simplify constant sub-expressions and replace variable references with literal values. This is basically a partial evaluation, that does as much of the calculation as it can with the provided variables. Function calls are not evaluated (except the built-in operator functions), since they may not be deterministic.

Simplify is pretty simple. For example, it doesn’t know that addition and multiplication are associative, so ((2*(4*x))+1) from the previous example cannot be simplified unless you provide a value for x. 2*4*x+1 can however, because it’s parsed as (((2*4)*x)+1), so the (2*4) sub-expression will be replaced with "8", resulting in ((8*x)+1).

js> expr = Parser.parse("x * (y * atan(1))").simplify({ y: 4 });
(x*3.141592653589793)
js> expr.evaluate({ x: 2 });
6.283185307179586

variables()

Get an array of the unbound variables in the expression.

js> expr = Parser.parse("x * (y * atan(1))");
(x*(y*atan(1)))
js> expr.variables();
x,y
js> expr.simplify({ y: 4 }).variables();
x

symbols()

Get an array of variables, including any built-in functions used in the expression.

js> expr = Parser.parse("min(x, y, z)");
(min(x, y, z))
js> expr.variables();
min,x,y,z
js> expr.simplify({ y: 4, z: 5 }).variables();
min,x

toString()

Convert the expression to a string. toString() surrounds every sub-expression with parentheses (except literal values, variables, and function calls), so it’s useful for debugging precedence errors.

toJSFunction(parameters: array | string, variables?: object)

Convert an Expression object into a callable JavaScript function. parameters is an array of parameter names, or a string, with the names separated by commas.

If the optional variables argument is provided, the expression will be simplified with variables bound to the supplied values.

js> expr = Parser.parse("x + y + z");
((x + y) + z)
js> f = expr.toJSFunction("x,y,z");
[Function] // function (x, y, z) { return x + y + z; };
js> f(1, 2, 3)
6
js> f = expr.toJSFunction("y,z", { x: 100 });
[Function] // function (y, z) { return 100 + y + z; };
js> f(2, 3)
105

Expression Syntax

The parser accepts a pretty basic grammar. It's similar to normal JavaScript expressions, but is more math-oriented. For example, the ^ operator is exponentiation, not xor.

Operator Precedence

Operator Associativity Description
(...) None Grouping
f(), x.y Left Function call, property access
^ Right Exponentiation
+, -, not, sqrt, etc. Right Unary prefix operators (see below for the full list)
*, /, % Left Multiplication, division, remainder
+, -, || Left Addition, subtraction, concatenation
==, !=, >=, <=, >, < Left Equals, not equals, etc.
and Left Logical AND
or Left Logical OR
x ? y : z Right Ternary conditional (if x then y else z)

Unary operators

The parser has several built-in "functions" that are actually unary operators. The primary difference between these and functions are that they can only accept exactly one argument, and parentheses are optional. With parentheses, they have the same precedence as function calls, but without parentheses, they keep their normal precedence (just below ^). For example, sin(x)^2 is equivalent to (sin x)^2, and sin x^2 is equivalent to sin(x^2).

The unary + and - operators are an exception, and always have their normal precedence.

Operator Description
sin x Sine of x (x is in radians)
cos x Cosine of x (x is in radians)
tan x Tangent of x (x is in radians)
asin x Arc sine of x (in radians)
acos x Arc cosine of x (in radians)
atan x Arc tangent of x (in radians)
sinh x Hyperbolic sine of x (x is in radians)
cosh x Hyperbolic cosine of x (x is in radians)
tanh x Hyperbolic tangent of x (x is in radians)
asinh x Hyperbolic arc sine of x (in radians)
acosh x Hyperbolic arc cosine of x (in radians)
atanh x Hyperbolic arc tangent of x (in radians)
sqrt x Square root of x. Result is NaN (Not a Number) if x is negative.
ln x Natural logarithm of x
log x Natural logarithm of x (synonym for ln, not base-10)
log10 x Base-10 logarithm of x
abs x Absolute value (magnatude) of x
ceil x Ceiling of x — the smallest integer that’s >= x
floor x Floor of x — the largest integer that’s <= x
round x X, rounded to the nearest integer, using "gradeschool rounding"
trunc x Integral part of a X, looks like floor(x) unless for negative number
exp x e^x (exponential/antilogarithm function with base e)
length x String length of x
-x Negation
+x Unary plus. This converts it's operand to a number, but has no other effect.

Pre-defined functions

Besides the "operator" functions, there are several pre-defined functions. You can provide your own, by binding variables to normal JavaScript functions. These are not evaluated by simplify.

Function Description
random(n) Get a random number in the range [0, n). If n is zero, or not provided, it defaults to 1.
fac(n) n! (factorial of n: "n * (n-1) * (n-2) * … * 2 * 1")
min(a,b,…) Get the smallest (minimum) number in the list
max(a,b,…) Get the largest (maximum) number in the list
hypot(a,b) Hypotenuse, i.e. the square root of the sum of squares of its arguments.
pyt(a, b) Alias for hypot
pow(x, y) Equivalent to x^y. For consistency with JavaScript's Math object.
atan2(y, x) Arc tangent of x/y. i.e. the angle between (0, 0) and (x, y) in radians.
if(c, a, b) Function form of c ? a : b

Tests

To run tests, you need:

  1. Install NodeJS
  2. Install Mocha npm install -g mocha
  3. Install Chai npm install chai
  4. Execute mocha

About

Mathematical expression evaluator in JavaScript

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 100.0%