forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
sage: Add script for generating scalar_split_lambda constants
- Loading branch information
1 parent
f554dfc
commit 329a2e0
Showing
2 changed files
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
""" Generates the constants used in secp256k1_scalar_split_lambda. | ||
See the comments for secp256k1_scalar_split_lambda in src/scalar_impl.h for detailed explanations. | ||
""" | ||
|
||
load("secp256k1_params.sage") | ||
|
||
def inf_norm(v): | ||
"""Returns the infinity norm of a vector.""" | ||
return max(map(abs, v)) | ||
|
||
def gauss_reduction(i1, i2): | ||
v1, v2 = i1.copy(), i2.copy() | ||
while True: | ||
if inf_norm(v2) < inf_norm(v1): | ||
v1, v2 = v2, v1 | ||
# This is essentially | ||
# m = round((v1[0]*v2[0] + v1[1]*v2[1]) / (inf_norm(v1)**2)) | ||
# (rounding to the nearest integer) without relying on floating point arithmetic. | ||
m = ((v1[0]*v2[0] + v1[1]*v2[1]) + (inf_norm(v1)**2) // 2) // (inf_norm(v1)**2) | ||
if m == 0: | ||
return v1, v2 | ||
v2[0] -= m*v1[0] | ||
v2[1] -= m*v1[1] | ||
|
||
def find_split_constants_gauss(): | ||
"""Find constants for secp256k1_scalar_split_lamdba using gauss reduction.""" | ||
(v11, v12), (v21, v22) = gauss_reduction([0, N], [1, int(LAMBDA)]) | ||
|
||
# We use related vectors in secp256k1_scalar_split_lambda. | ||
A1, B1 = -v21, -v11 | ||
A2, B2 = v22, -v21 | ||
|
||
return A1, B1, A2, B2 | ||
|
||
def find_split_constants_explicit_tof(): | ||
"""Find constants for secp256k1_scalar_split_lamdba using the trace of Frobenius. | ||
See Benjamin Smith: "Easy scalar decompositions for efficient scalar multiplication on | ||
elliptic curves and genus 2 Jacobians" (https://eprint.iacr.org/2013/672), Example 2 | ||
""" | ||
assert P % 3 == 1 # The paper says P % 3 == 2 but that appears to be a mistake, see [10]. | ||
assert C.j_invariant() == 0 | ||
|
||
t = C.trace_of_frobenius() | ||
|
||
c = Integer(sqrt((4*P - t**2)/3)) | ||
A1 = Integer((t - c)/2 - 1) | ||
B1 = c | ||
|
||
A2 = Integer((t + c)/2 - 1) | ||
B2 = Integer(1 - (t - c)/2) | ||
|
||
# We use a negated b values in secp256k1_scalar_split_lambda. | ||
B1, B2 = -B1, -B2 | ||
|
||
return A1, B1, A2, B2 | ||
|
||
A1, B1, A2, B2 = find_split_constants_explicit_tof() | ||
|
||
# For extra fun, use an independent method to recompute the constants. | ||
assert (A1, B1, A2, B2) == find_split_constants_gauss() | ||
|
||
# PHI : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. | ||
def PHI(a,b): | ||
return Z(a + LAMBDA*b) | ||
|
||
# Check that (A1, B1) and (A2, B2) are in the kernel of PHI. | ||
assert PHI(A1, B1) == Z(0) | ||
assert PHI(A2, B2) == Z(0) | ||
|
||
# Check that the parallelogram generated by (A1, A2) and (B1, B2) | ||
# is a fundamental domain by containing exactly N points. | ||
# Since the LHS is the determinant and N != 0, this also checks that | ||
# (A1, A2) and (B1, B2) are linearly independent. By the previous | ||
# assertions, (A1, A2) and (B1, B2) are a basis of the kernel. | ||
assert A1*B2 - B1*A2 == N | ||
|
||
# Check that their components are short enough. | ||
assert (A1 + A2)/2 < sqrt(N) | ||
assert B1 < sqrt(N) | ||
assert B2 < sqrt(N) | ||
|
||
G1 = round((2**384)*B2/N) | ||
G2 = round((2**384)*(-B1)/N) | ||
|
||
def rnddiv2(v): | ||
if v & 1: | ||
v += 1 | ||
return v >> 1 | ||
|
||
def scalar_lambda_split(k): | ||
"""Equivalent to secp256k1_scalar_lambda_split().""" | ||
c1 = rnddiv2((k * G1) >> 383) | ||
c2 = rnddiv2((k * G2) >> 383) | ||
c1 = (c1 * -B1) % N | ||
c2 = (c2 * -B2) % N | ||
r2 = (c1 + c2) % N | ||
r1 = (k + r2 * -LAMBDA) % N | ||
return (r1, r2) | ||
|
||
# The result of scalar_lambda_split can depend on the representation of k (mod n). | ||
SPECIAL = (2**383) // G2 + 1 | ||
assert scalar_lambda_split(SPECIAL) != scalar_lambda_split(SPECIAL + N) | ||
|
||
print(' A1 =', hex(A1)) | ||
print(' -B1 =', hex(-B1)) | ||
print(' A2 =', hex(A2)) | ||
print(' -B2 =', hex(-B2)) | ||
print(' =', hex(Z(-B2))) | ||
print(' -LAMBDA =', hex(-LAMBDA)) | ||
|
||
print(' G1 =', hex(G1)) | ||
print(' G2 =', hex(G2)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters